Models for Quantifying Risk --Sixth Edition

Errata List

September 19, 2014

Page	Location	Correction
91	Line following Equation (6.18b)	Delete "or $\operatorname{Pr}\left(K_{x}^{*}=n+1\right)$ "; allow the comma to follow the earlier $" \operatorname{Pr}\left(K_{x}=n\right) "$.
$\begin{aligned} & 282 \\ & 285 \end{aligned}$	$\begin{aligned} & 11^{\text {th }} \text { line } \\ & 6^{\text {th }} \text { line } \end{aligned}$	Example 10.15 should be Example 10.11.
333	Exercise 12-34	For two persons alive at ages x and y at time 0 , show that the Kolmogorov differential equation for ${ }_{t} p_{x y}^{03}$ solves for ${ }_{n} p_{x y}^{03}={ }_{n} q_{x y}^{*}+\lambda \cdot{ }_{e}^{e}{ }_{x y}: n,$ where λ is the constant common shock hazard and ${ }_{n} q_{x y}^{*}$ denotes the probability that both (x) and (y) have failed by time n due to hazard factors that are unique to each person (i.e., not elements of the common hazard), as described in Section 12.7.

