## Errata Sheet

Abbreviations: $\mathrm{P}=$ page; $\mathrm{L}=$ Line; $\mathrm{Q}=$ Question; $\mathrm{E}=$ Example; $\mathrm{S}=$ Solution

P159, L20: Replace the sentence "As expected, ..." with "Consistent with our previous findings with this data set, we see negative coefficients for sex (-1.34) and minority (-7.87) indicating that the mathgain score was lower for both girls and minority students in this data set."

P445, L9: Replace "severity" with "pure premium"
P447, Q9: Replace "the first treatment" with "the second treatment"
P472, Q15: Replace

$$
\operatorname{Var}\left(Y_{t i}\right)=\operatorname{Var}\left(u_{0 i}\right)+X_{t i}^{(3)} \operatorname{Var}\left(u_{3 i}\right)+\operatorname{Var}\left(\epsilon_{t i}\right)=\sigma^{2}+\sigma_{i n}^{2}+\sigma_{t r}^{2} .
$$

(Answer: D)
with

$$
\begin{aligned}
\operatorname{Var}\left(Y_{t i}\right) & =\operatorname{Var}\left[u_{0 i}+X_{t i}^{(3)} \operatorname{Var}\left(u_{3 i}\right)+\operatorname{Var}\left(\epsilon_{t i}\right)\right] \\
& =\operatorname{Var}\left(u_{0 i}\right)+\operatorname{Var}\left(u_{3 i}\right)+2 \operatorname{Cov}\left(u_{0 i}, u_{3 i}\right)+\operatorname{Var}\left(\epsilon_{t i}\right) \\
& =\sigma_{i n}^{2}+\sigma_{t r}^{2}+2 \rho \sigma_{i n} \sigma_{t r}+\sigma^{2} .
\end{aligned}
$$

(Answer: E)

P475, Q30: Replace the two equations with

$$
\begin{aligned}
& V=\frac{n-1}{n} W+B=\frac{2000-1}{2000}(35)+57=91.9825 \\
& \hat{R}=\sqrt{V / W}=\sqrt{91.9825 / 35}=1.62
\end{aligned}
$$

(Answer: B)

P466: Revised answer keys: \#12 C, \#15 E, \#30 B, \#35 A, \#36 B.
P471, Q12: Replace "The covariance of outcomes from different doctor ..." with: The covariance of outcomes from different doctor and different patient is given as 18. Hence, for $j \neq j^{\prime}$ and $k \neq k^{\prime}$,

$$
\operatorname{Cov}\left(Y_{i j k}, Y_{i j^{\prime} k^{\prime}}\right)=\operatorname{Cov}\left(u_{i}+v_{j}+\epsilon_{i j k}, u_{i}+v_{j^{\prime}}+\epsilon_{i j k^{\prime}}\right)=\sigma_{u}^{2}=18 .
$$

The value given in the diagonal is the variance of the outcomes $Y_{i j k}$ :

$$
\operatorname{Var}\left(Y_{i j k}\right)=\sigma_{u}^{2}+\sigma_{v}^{2}+\sigma^{2}=72 .
$$

The Intraclass Correlation of Coefficient (Study Manual, Sec. 6.4) for patients with the same clinic is

$$
\begin{equation*}
\frac{\sigma_{u}^{2}}{\sigma_{u}^{2}+\sigma_{v}^{2}+\sigma^{2}}=\frac{18}{72}=0.25 \tag{Answer:C}
\end{equation*}
$$

