ERRATA LIST - SOLUTION MANUAL

Page 56 Exercise 3-19 - delete (e)
Page 56 Exercise 3-21 - lines 4-4:
$\frac{12.3}{3.5}=\frac{n}{m}$.
In other words, the ratio $\frac{n}{m}$ of girls to boys is $12.3 / 3.5=3.51: 1$.
Page 58 Exercise 3-32- line 1: Ryan's apple is $z=\frac{19-11.19}{2.848}=2.74$.
Page 80 Exercise 4-38 (c) - replace 9.2 in middle of line with 9.6

Page 98 Exercise 5-3 (c) and (d) should read:
(c) Using the CDF,

$$
\operatorname{Pr}(2<Y \leq 3)=F(3)-F(2)=\left(1-e^{-3(3)}\right)-\left(1-e^{-3(2)}\right)=\left(e^{-6}-e^{-9}\right) .
$$

Using the probability density function,

$$
\operatorname{Pr}(2<Y \leq 3)=\int_{2}^{3} 3 e^{-3 y} d y=-\left.e^{-3 y}\right|_{y=2} ^{y=3}=\left(e^{-6}-e^{-9}\right)
$$

(d)

$$
\begin{aligned}
\operatorname{Pr}(Y>-3)= & \int_{-3}^{\infty} f(y) d y \\
= & \int_{-3}^{0} f(y) d y+\int_{0}^{\infty} f(y) d y \\
& \int_{-3}^{0} 0 d y+\int_{0}^{\infty} 3 e^{-3 y} d y=0+1=1 .
\end{aligned}
$$

Page 90 Exercise 5-4 (a) - replace line 2 with: $E[\boldsymbol{T}]=\int_{82}^{90} \frac{1}{8} \cdot \boldsymbol{t} d t=86$.
Page 99 - Exercise 5-9 - line 3: replace $u=1-x$ with $u=1+x$
Page 101 - Exercise 5-17-replace $f(x)=1$ with $f(x)=0$
Page 101 - Exercise 5-18 - line 4 replace with:
with $t=1-0.5 \sqrt{2}=.2929$, and $t=1+0.5 \sqrt{2}=1.7071$.
Page 102 - Exercise 5-20 (e) should read: $x_{5}=\sqrt{\frac{2-\sqrt{2}}{2}}=0.5412$.

Page 104 - Exercise 5-30 (b) - replace last 2 lines with:
$E\left[(\text { Modified Payment })^{2}\right]=\int_{50}^{90}(1000 x)^{2} \cdot \frac{1}{60} d x+100,000^{2} \frac{20}{60}=6,688,888,889$

$$
\sigma_{\text {Modified Payment }}=\$ 16,997
$$

Page 105 - Exercise 5-34 - replace formula in line 2 with:
$E[$ Loss not Covered $]=\int_{.6}^{2} x \cdot \frac{2.5(0.6)^{2.5}}{x^{3.5}} d x+\int_{2}^{\infty}(2) \cdot \frac{2.5(0.6)^{2.5}}{x^{3.5}} d x=.93$.
Page 106-Exercise 5-37 - replace with:
$E[$ Not Paid $]=\int_{0}^{10} x \cdot \frac{x}{5000} d x+10 \cdot \operatorname{Pr}[x>10]=.06 \overline{6}+10 \cdot .99=9.9 \overline{6}$.
Page 106-Exercise 5-40 - final answer should be 0.0314.
Page 109 - Exercise 5-50 - line 3 should read:
$=-\left.\frac{1}{3} \frac{1}{(1 / 3-t)} e^{-(1 / 3-t) x}\right|_{x=0} ^{\infty}=\frac{1}{1-3 t}($ for $t<1 / 3)$
Page 111 - Sample Exam 1 (d) - formula should read:
$f(x)=3.6 x-2.4 x^{2} \Rightarrow f^{\prime}(x)=3.6-4.8 x=0 \Rightarrow x=.75$
Page 111-2 (b) - insert after formula: Since we can only define left and right derivatives of F at 0 , we can take $\lim _{x \downarrow 0} f(x)=3$ as the maximum of $f(x)$. Thus, the mode is $x=0$.

Page 113-9 replace with:
$F(x)=1.25-\frac{12.5}{x+10}$ for $0 \leq x \leq 40$.
The mean is $\begin{aligned} \mu_{X}=\int_{0}^{40}[1-F(x)] d x & =\int_{0}^{40}\left[-.25+\frac{12.5}{x+10}\right] d x \\ & =(-.25)(40)+12.5 \ln 5=10.118,\end{aligned}$ the median is m, where $.5=F(m) \Rightarrow m=\frac{20}{3}$, and the mode occurs at $x=0$.

Page 114-13 (a) - replace line 2 with:

$$
=5 \int_{0}^{\infty} e^{-(5-t) x} d x=\left.\frac{-5}{5-t} \cdot e^{-(5-7) x}\right|_{x=0} ^{x=\infty}=\frac{5}{5-t} \quad \text { if } t<5 .
$$

Page 114-14-line 2 replace X with Y. Also the axis labels in the graph should be $F(y)$ and y.

Page $117-6-1$ (d) replace 63.34 with 66.64 in two places.
Page 119-6-9 (d) - line 3 - replace with:
$\operatorname{Pr}(1<Z<3)=F(3)-F(1)=e^{-1 / 5}-e^{-3 / 5}=.2699$.

Page 110-6-13 - replace with:
$\beta=\sigma=10$, so $Q_{3}-Q_{1}=10 \ln (.75)-10 \ln (.25)=10.986$.
Page 122-6-26 (a) - replace line 2 with: $\Rightarrow \operatorname{Pr}\left[Z \leq z_{\alpha}\right]=.9$
Page 122-6-26 (d) - replace line 1 with:
$.95=\operatorname{Pr}\left[Z \geq z_{\alpha}\right]=1-\operatorname{Pr}\left[Z \leq z_{\alpha}\right] \Rightarrow \operatorname{Pr}\left[Z \leq z_{\alpha}\right]=.05 \Rightarrow \alpha=.05$ and
Page 122-6-27 (b) - replace line 3 with: $\Rightarrow z_{\alpha}=z_{.9515}=1.66$
Page 124 -6-37 (a) - replace 365,710 with 365,711 .
Page 125-6-41 (a) last line should be:
$\operatorname{Pr}(H=60) \approx \operatorname{Pr}\left(\frac{59.5-50}{5}<Z<\frac{60.5-50}{5}\right)=.9821-.9713=.0108$.
Page 125-6-44 - replace (b) and (c) with:
(b) $E[\bar{X}]=75$ and $\operatorname{Var}[\bar{X}]=\frac{50^{2}}{(12)(75)}=\left(\frac{5}{3}\right)^{2}$.
(c) $\operatorname{Pr}\left[72<X_{i}<77\right]=\frac{5}{50}=.1$. That is, only 10% of the time will a randomly selected number be between 72 and 77. On the other hand, for the sample mean,

$$
\operatorname{Pr}[72<\bar{X}<77] \approx \operatorname{Pr}\left[\frac{72-75}{5 / 3}<Z<\frac{77-75}{5 / 3}\right]=\operatorname{Pr}[-1.8<Z<1.2]=84.9 \% .
$$

Page $125-6-45$ (a) - line 2 should be: then $\quad \operatorname{Pr}(98<\bar{X}<102)=\operatorname{Pr}\left(\frac{-2}{1.6}<Z<\frac{2}{1.6}\right)=.7888$.

Page 128-6-56 (c) - last 3 lines should read:
Then,

$$
\begin{aligned}
\operatorname{Pr}[S>5] & =\operatorname{Pr}\left[4^{t h} \text { insult arrives later than } 5 \text { weeks }\right] \\
& =\operatorname{Pr}[\text { at most } 3 \text { insults in a } 5 \text { week period }] \\
& =\operatorname{Pr}\left[Y_{5}=0,1,2,3\right]=e^{-5}\left(1+5+\frac{5^{2}}{2!}+\frac{5^{3}}{3!}\right)=0.265 .
\end{aligned}
$$

Page 129-6-59 (b) - replace formula in line 3 with:

$$
E\left[X^{3}\right]=\int_{0}^{\infty} x^{3} \cdot \frac{1}{2^{6} \cdot 5!} \cdot x^{5} \cdot e^{-x / 2} d x=\frac{1}{2^{6} \cdot 5!} \cdot \overbrace{\int_{0}^{\infty} x^{8} \cdot e^{-x / 2} d x}^{\alpha=9, \beta=2}
$$

Page 129-6-59 (c) - replace lines 1 and 2 with:
(c) $E[\sqrt{X}]=\int_{0}^{\infty} \sqrt{x} \cdot \frac{1}{2^{6} \cdot 5!} \cdot x^{5} \cdot e^{-x / 2} d x$

$$
=\frac{1}{2^{6} \cdot 5!} \cdot \overbrace{\int_{0}^{\infty} x^{5.5} \cdot e^{-x / 2} d x}^{\alpha=6.5, \beta=2}
$$

Page 129-6-61 (b) - replace CHIDIST with CHISQ.DIST
Page 129-6-61 (c) - replace GAMMADIST with GAMMA.DIST

Page $129-6-62$ - line 1 - replace .5 with .05
Page 129-6-62 - replace last line with:

$$
B(4,2)=B(2,4)=\frac{3!\cdot 1!}{5!}=\frac{1}{20}=.05
$$

Page 130-6-64 (b) - replace \bar{X} with $E[X]$

Page $130-6-66$ (b) - replace \bar{X} with $E[X]$

Page $131-6-67$ - replace line 1 with: $E\left[7 X-5 X^{6}\right]=\int_{0}^{1}\left[7 x-5 x^{6}\right]\left[60 x^{2}(1-x)^{3}\right] d x$

Page 131 - 6-68 (d) - replace $\$ 242$ with $\$ 242.14$.
Page 131-6-68 (e) - replace \bar{Y} with $E[Y]$

Page 131-6-69 - last line - replace with:
$.95=1-6\left(1-x_{.95}\right)^{5}+5\left(1-x_{.95}\right)^{6}$ implies that the $95^{\text {th }}$ percentile is $x_{.95}=.5818$.

Page 133-6-73 (d) - delete line 3 (redundant)
Page 135-9-line 2 - replace total losses with total payout
Page 136-12 - last line - replace $\ln 5$ with $\ln 4$
Page 139-7-1 (b) - At end add the phrase, "Or, recognize from (a) that X is a Poisson random variable with mean equal to 3 .

Page 140-7-5 - table labels modified as shown below:

			C		
		0	1	2	$p_{B}(b)$
	0	$\begin{aligned} & \text { water } \text { Gaterade cola } \\ & \frac{{ }_{4} C_{3} \cdot{ }_{6} C_{0} \cdot{ }_{2} C_{0}}{{ }_{12} C_{3}} \end{aligned}$	$\frac{12}{220}$	$\frac{4}{220}$	$\frac{20}{220}$
B	1	$\begin{array}{r}36 \\ \hline 220\end{array}$	$\frac{48}{220}$	$\frac{6}{220}$	$\frac{90}{220}$
	2	$\frac{60}{220}$	$\frac{30}{220}$	0	$\frac{90}{220}$
	3	$\frac{20}{220}$	0	0	$\frac{20}{220}$
$p_{C}(c)$		$\frac{120}{220}$	$\frac{90}{220}$	$\frac{10}{220}$	1.00

Page 142-7-9 - replace with this simpler solution:
Let $p_{1}(2)$ be the marginal probability that $N_{1}=2$. Then the conditional probability function for N_{2} given that $N_{1}=2$ is given by,

$$
p_{2}\left(n_{2} \mid 2\right)=\operatorname{Pr}\left[N_{2}=n_{2} \mid N_{1}=2\right]=\frac{p\left(2, n_{2}\right)}{p_{1}(2)}=\frac{3}{4}\left(\frac{1}{4}\right) \frac{e^{-2}\left(1-e^{-2}\right)^{n_{2}-1}}{p_{1}(2)} ; n_{2}=1,2,3, \ldots
$$

The only variable part in this expression is $\left(1-e^{-2}\right)^{n_{2}-1}$, and since this is a geometric-type probability distribution, we can conclude that N_{2} can be interpreted as the trial number of the first success in a series of independent Bernoulli trials with probability q of failure equal to $\left(1-e^{-2}\right)$. Therefore the probability of success is $p=1-q=e^{-2}$, and $E\left[N_{2} \mid N_{1}=2\right]=\frac{1}{p}=e^{2}$.

Page 144-7-16 - add at end: Note: An easier solution can be obtained using formulas from Section 8.3.
Page 144-7-18 - add at end: See note above for 7-16.
Page 146-7-23 - add at end: Note: This also follows directly using the Property (2) of Properties of Correlations in Section 7.3.

Page 149-7-32 - following the diagram add, "The diagram illustrates $g(1 / 4)$."

Page 151-7-41 (a) - first line should read:
(a) $\quad f_{X}(x)=\int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \frac{1}{4 \pi} d y=\frac{\sqrt{4-x^{2}}}{2 \pi}$ for $-2 \leq x \leq 2$, zero otherwise.

Page 153-7-48 - last line to be replaced by:

$$
=\frac{2}{9}\left(1-e^{-1}\right) \underbrace{\left[-e^{-y}(y+1)\right]_{y=0}^{3}}_{\text {using integration by parts }}=\frac{2}{9}\left(1-e^{-1}\right)\left(1-4 e^{-3}\right)=.1125
$$

Page 155-7-53 (d) - replace line 1 with:
(d)

$$
f_{X}(x)=\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{1}{\pi} d y=\frac{2 \sqrt{1-x^{2}}}{\pi} ; \quad-1 \leq x \leq 1 .
$$

Page 159-7-66 - replace solution with:

$$
\begin{align*}
M_{W, Z}\left(t_{1}, t_{2}\right) & =E\left[e^{t_{1} W+t_{2} Z}\right] \\
& =E\left[e^{t_{1}(X+Y)+t_{2}(Y-X)}\right] \\
& =E\left[e^{\left(t_{1}-t_{2}\right) X+\left(t_{2}+t_{1}\right) Y}\right] \\
& =E\left[e^{\left(t_{1}-t_{2}\right) X} e^{\left(t_{2}+t_{1}\right) Y}\right] \\
& =\overbrace{E\left[e^{\left(t_{1}-t_{2}\right) X}\right] E\left[e^{\left(t_{2}+t_{1}\right) Y}\right]} \\
& =M_{X}\left(t_{1}-t_{2}\right) \cdot M_{Y}\left(t_{2}+t_{1}\right)=e^{\frac{\left(t_{1}-t_{2}\right)^{2}}{2}} \cdot e^{\frac{\left(t_{2}+t_{1}\right)^{2}}{2}}=e^{t_{1}^{2}+t_{2}^{2}} . \tag{E}
\end{align*}
$$

Page $160-4-$ correct and reorder as follows for (h) - (k):
(h) $E[X Y]=3.7576=124 / 33$.
(i) $V[X]=.19835$ and $V[Y]=.6336$.
(j) $\operatorname{Cov}(X, Y)=-4 / 363$.
(k) $\quad \rho=-.03108$.

Page 162-12-replace with:
Let $G \sim \operatorname{Exp}(\beta=6)$ denote the random wait time for a good driver to file a claim and let $B \sim \operatorname{Exp}(\beta=3)$ denote the random wait time for a bad driver to file a claim.

$$
\begin{align*}
\operatorname{Pr}(G<3 \cap B<2) & =\operatorname{Pr}(G<3) \cdot \operatorname{Pr}(B<2) \\
& =\left(1-e^{-3 / 6}\right) \cdot\left(1-e^{-2 / 3}\right) \\
& =\left(1-e^{-1 / 2}\right) \cdot\left(1-e^{-2 / 3}\right) \\
& =1-e^{-2 / 3}-e^{-1 / 2}+e^{-7 / 6} . \tag{C}
\end{align*}
$$

Page 162-13-replace first sentence with:
Let $P=$ premiums $\sim \operatorname{Exp}(\beta=2)$ and $C=$ claims $\sim \operatorname{Exp}(\beta=1)$.
Page 164-16 - diagram:

X fails in first hour		
Both Fail	Y fails in first hour	

Page 167-8-3 (b) - Delete "Method 2."
Page 168-8-6 (c) - Final answer is . 4024 .
Page 170-8-12 line 2 should read:
$f_{X}(x)=\int_{0}^{x} f_{S}(s) \cdot f_{T}(x-s) d s=\lambda^{2} \cdot \int_{0}^{x} e^{-\lambda s} \cdot e^{-\lambda(x-s)} d s$

Page $171-8-15$ - line 2 - replace "first" with "second" and replace last two lines to read:
Let X be the time until failure of the first generator and Y the time until failure of the second. Let $S=X+Y$. Then $S \sim \Gamma(2,10)$, so $\operatorname{Var}[S]=\alpha \beta^{2}=200$.

Page 172-8-16 - Replace first line with: Let S denote the sum of the roll of two fair dice.
Page 172-8-17 - last line should read: simulated outcomes $8,10,11,8$, and 10 .
Page 173-8-21 (b) - last 2 lines should read:
(b) The mean of the simulated outcomes is 5.2034 and the sample standard deviation is 3.939.

Page 175-8-23 (d) - last line should read:
$P V=100,000 \int_{0}^{\infty} e^{-.06 x}\left(\frac{1}{20} e^{-x / 20}\right) d x=5000 \int_{0}^{\infty} e^{-.11 x} d x=\frac{5000}{.11}=45,455$
Page 176-7-8-26 (c) - line 1 - replace with:
(c) Let $T=\min \left[X_{1}, \ldots, X_{n}\right]$. Then $f_{T}(t)=\frac{n(10-t)^{n-1}}{10^{n}} ; 0 \leq t \leq 10$.

Page 176-8-26 (c) - replace with:
(c) Let $T=\min \left[X_{1}, \ldots, X_{n}\right]$. Then $f_{T}(t)=\frac{n(10-t)^{n-1}}{10^{n}} ; 0 \leq t \leq 10$.

$$
\begin{aligned}
E[T] & =\int_{0}^{10} t \cdot \frac{n(10-t)^{n-1}}{10^{n}} d t \\
& =\frac{n}{10^{n}}[\underbrace{\left.\left[-\frac{t(10-t)^{n}}{n}-\frac{(10-t)^{n+1}}{n(n+1)}\right]\right|_{t=0} ^{10}=\frac{n}{10^{n}} \cdot \frac{10^{n+1}}{n(n+1)}=\frac{10}{n+1} .}_{\text {using integration by parts }} .
\end{aligned}
$$

$E\left[T^{2}\right]=\int_{0}^{10} t^{2} \cdot \frac{n(10-t)^{n-1}}{10^{n}} d t$
$=\frac{n}{10^{n}} \underbrace{\left.\left[-\frac{t^{2}(10-t)^{n}}{n}-\frac{2 t(10-t)^{n+1}}{n(n+1)}-\frac{2(10-t)^{n+2}}{n(n+1)(n+2)}\right]\right|_{t=0} ^{10}}_{\text {using integration by parts }}$
$=\frac{n}{10^{n}} \cdot \frac{2 \cdot 10^{n+2}}{n(n+1)(n+2)}=\frac{2 \cdot 10^{2}}{(n+1)(n+2)}$.
Then,

$$
\begin{aligned}
\operatorname{Var}[T] & =\frac{2 \cdot 10^{2}}{(n+1)(n+2)}-\frac{10^{2}}{(n+1)^{2}} \\
& =\frac{10^{2}}{(n+1)}\left[\frac{2}{n+2}-\frac{1}{n+1}\right]=\frac{10^{2} n}{(n+1)^{2}(n+2)} .
\end{aligned}
$$

Next, let $S=\max \left[X_{1}, \ldots, X_{n}\right]$. Then $f_{S}(s)=\frac{n s^{n-1}}{10^{n}} ; 0 \leq s \leq 10$.

$$
\begin{aligned}
& E[S]=\int_{0}^{10} s \cdot \frac{n s^{n-1}}{10^{n}} d s=\frac{n}{10^{n}} \cdot \frac{10^{n+1}}{(n+1)}=\frac{10 n}{n+1}, \text { and } \\
& E\left[S^{2}\right]=\int_{0}^{10} s^{2} \cdot \frac{n s^{n-1}}{10^{n}} d s=\frac{n}{10^{n}} \cdot \frac{10^{n+2}}{(n+2)}=\frac{10^{2} n}{n+2} .
\end{aligned}
$$

(These integrals don't require integration by parts!) Then,

$$
\begin{aligned}
\operatorname{Var}[S] & =\frac{10^{2} n}{n+2}-\frac{10^{2} n^{2}}{(n+1)^{2}} \\
& =10^{2} n\left[\frac{1}{n+2}-\frac{n}{(n+1)^{2}}\right]=\frac{10^{2} n}{(n+1)^{2}(n+2)} .
\end{aligned}
$$

Note that S and T have the same variance, which might have been anticipated from the symmetry between the two random variables with an underlying uniform distribution.

Page 184 - 8-47 (b) - final answer should be 3.227 million.
Page 184-8-47 (c) - Insert after solution: Note: Graphing calculator used to evaluate the definite integral.

Page 186-8-55 - first line after table should read:
$\operatorname{Pr}[L<1 \mid N=0]=1$ and $\operatorname{Pr}[L<1 \mid N=1]=1$. Given $N=2$, let X be the driver's loss
Page 189 - 8-66 - replace Note: with:
Note: If the continuity correction is omitted then the resulting calculations,
$\operatorname{Pr}\left[Z>\frac{156-150}{\sqrt{150}}\right]=.3121$, or $\operatorname{Pr}\left[Z>\frac{157-150}{\sqrt{150}}\right]=.2843$, produce incorrect answers (D) and (B),
respectively. These answers were calculated directly from the standard normal tables without interpolation.

Page 191 - 1 - last line should read: $f_{Y}(y)=3\left(\frac{1}{2} \ln y\right)^{2} \cdot \frac{1}{2 y}=\frac{3(\ln y)^{2}}{8 y} ; 1 \leq y \leq e^{2}$
Page 192-4-top line of page (line 5 of solution) should read:
The claim amounts, X_{A} and X_{B} are constants, so $\mu_{X_{A}}=200$ and $\mu_{X_{B}}=100$, with

Page 194-10 - add at end: Note: This can also be calculated as $E[\operatorname{Max}(X, Y)]-E[\operatorname{Min}(X, Y)]$

Page 194 - 12 - add at end: Note: Because the wording of the problem was ambiguous, the answer (D) was also accepted.

Page 221-11-3-replace $Y_{(20)}$ with $Y_{(1)}$ in two places
Page 232 - 11-39 (b) - replace $\sigma_{X}=\sqrt{100 \cdot .8 \cdot .2}=4$ with $\sigma_{X}=\sqrt{100 \cdot 0.5 \cdot 0.5}=5$

Page 234-11-45 - line 3 - replace with:
$.05=\operatorname{Pr}[\bar{X} \geq A \mid \mu=0]=\operatorname{Pr}\left[Z \geq \frac{A-0}{\sqrt{25 / n}}\right] \Rightarrow \frac{A}{\sqrt{25 / n}}=1.645$

