ERRATA
 SOLUTIONS TO
 INTRODUCTION TO RATEMAKING AND LOSS RESERVING
 FOR PROPERTY AND CASUALTY INSURANCE
 Third Edition

Page 51, Exercise 5.12

The solutions should be:
(b) Since Expense ratio is 30\%. Maximum loss ratio before reinsurance is 70\% (100% - 30\%). It wants to protect itself against eh 20% probability of an $\$ 8 \mathrm{M}$ loss year.

Expected Losses before reinsurance:

$$
\begin{aligned}
\$ 5 \mathrm{M} \times 20 \% & =\$ 1.0 \mathrm{M} \\
6 \mathrm{M} \times 20 \% & =1.2 \\
7 \mathrm{M} \times 40 \% & =2.8 \\
8 \mathrm{M} \times 20 \% & =1.6 \\
& =\$ 6.6 \mathrm{M}
\end{aligned}
$$

Total
Since the Losses $(\$ 6.6 M)+$ Expenses $(\$ 3.0 M)=\$ 9.6 M, \$ 400,000$ is left to buy reinsurance. $\$ 400,00$ of reinsurance premium would reduce its net premium to \$9,600,000.

If Value reinsures to stop-loss at 70% then instead of $\$ 7 \mathrm{M}$ losses (70% loss ratio) 40% of the time, it's net losses will be $\$ 7 \mathrm{M} 60 \%$ of the time ($40 \%+20 \%$) since the reinsurer will pay the excess over $\$ 7 \mathrm{M}$

$$
\begin{aligned}
\$ 5 \mathrm{M} \times 20 \% & =\$ 1.0 \mathrm{M} \\
6 \mathrm{M} \times 20 \% & =1.2 \\
7 \mathrm{M} \times 60 \% & =4.2 \\
& =\$ 6.4 \mathrm{M}
\end{aligned}
$$

Total
Therefore
(c) The loss ratio before reinsurance is:

$$
\$ 6,600,000 / \$ 10,000,000=66.0 \%
$$

And after reinsurance is

$$
\$ 6,400,000 /(\$ 10,000,000-\$ 400,000)=66.7 \%
$$

(d) The reinsurer has a 20% probability of paying $\$ 1,000,000(\$ 8 \mathrm{M}-\$ 7 \mathrm{M})$, so its expected losses are $\$ 200,000$ and its expected loss ratio is (assuming Value pays its maximum reinsurance premium):

$$
\$ 200,000 / \$ 400,000=50.0 \%
$$

Updated February 6, 2009

