
TO: Users of the ACTEX Review Seminar on DVD for SOA Exam MLC

FROM: Richard L. (Dick) London, FSA

Dear Students,

Thank you for purchasing the DVD recording of the ACTEX Review Seminar for SOA Exam M,
Life Contingencies segment (MLC). This version is intended for the exam offered in May 2007
and thereafter. Please be aware that the DVD seminar does not deal with the Financial
Economics segment (MFE) of Exam M.

The purpose of this memo is to provide you with an orientation to this seminar, which is
devoted to a review of life contingencies plus the related topics of multi-state models and the
Poisson process. A 6-page summary of the topics covered in the seminar is attached to this cover
memo. Although the seminar is organized independently of any particular textbook, the
summary of topics shows where each topic is covered in the textbook Models for Quantifying Risk
(Second Edition), by Cunningham, Herzog, and London.

In order to be ready to write the MLC exam, you need to accomplish three stages of preparation:

This first stage is to obtain an understanding of all the underlying mathematical theory, including
a mastery of standardized international actuarial notation. This DVD review seminar is designed
to enable you to obtain that understanding.

The second stage is to prepare, and then master, a complete list of all formulas and relationships
(of which there are many) needed for the exam. For those who do not wish to prepare their own
lists, a very complete set of formulas (364 in total) is available from ACTEX in the form of study
flash cards.

The third stage is to do a large number of exam-type practice questions, beginning with the end-
of-chapter exercises is the textbook. In addition, you should purchase one (or more) of the
several exam-prep study guides that have been prepared for that purpose. A relatively small
number of sample problems (34) are worked out for the group in this DVD. A copy of these
questions, with detailed solutions, is attached to this cover memo for your reference.

Good luck to you on your exam
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Summary of Topics

A. Parametric Survival Models

1. Age-at-Failure Random Variable X (3.1)
a. CDF
b. SDF
c. PDF
d. HRF
e. CHF
f. Moments
g. Actuarial notation and terminology

2. Examples (3.2)
a. Uniform
b. Exponential
c. Gompertz
d. Makeham
e. Weibull
f. Others via transformation

3. Time-to-Failure Random Variable xT (3.3)

a. SDF
b. CDF
c. PDF
d. HRF
e. Moments
f. Discrete counterpart xK

g. Curtate duration K(x)

4. Central Rate (3.4)

5. Select Models (3.5)

B. The Life Table

1. Definition (4.1)

2. Traditional Form (4.2)
a. x

b. xd and n xd

c. xp and n xp

d. xq and n xq

3. Other Functions (4.3)
a. x and x t 

b. PDF and moments of X
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c. |n m xq

d. PDF and moments of xT

e. Temporary expectation
f. Curtate expectation
g. Temporary curtate expectation
h. Central rate

4. Non-Integral Ages (4.5)
a. Linear assumption
b. Exponential assumption
c. Hyperbolic assumption

5. Select Tables (4.6)

C. Contingent Payment Models

1. Discrete Models (5.1)
a. ,xZ and its moments

b. 1
:x nZ and its moments

c. | ,n xZ and its moments; covariance with 1
:x nZ

d.
1

:x nZ and its moments; covariance with 1
:x nZ

e. : ,x nZ and its moments

2. Group Deterministic Interpretation (5.2)

3. Continuous Models (5.3)

a. ,xZ and its moments

b. 1
:x nZ and | ,n xZ and their moments

c. :x nZ

d. ( ) ,m
xZ and its moments

e. Evaluation under exponential distribution
f. Evaluation under uniform distribution

4. Varying Payments (5.4)

a. xB in general

b. (IA)x

c. 1
:( )x nIA and 1

:( )x nDA

d. ( ) ,xIA 1
:( )x nIA and 1

:( )x nDA

e. ( ) ,xI A 1
:( ) ,x nI A and 1

:( ) ,x nDA

5. Approximation from Life Table (5.5)
a. Continuous models
b. mthly models
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D. Contingent Annuity Models

1. Whole Life (6.1)
a. Immediate
b. Due
c. Continuous

2. Temporary (6.2)
a. Immediate
b. Due
c. Continuous

3. Deferred (6.3)
a. Immediate
b. Due
c. Continuous

4. mthly Payments (6.4)
a. Immediate
b. Due
c. Random variables
d. Approximation from life table

5. Non-Level Payments (6.5)
a. Immediate
b. Due
c. Continuous

E. Funding Plans

1. Annual Payment Funding (7.1)
a. Discrete payment models
b. Continuous payment models
c. Non-level funding

2. Random Variable Analysis (7.2)
d. Present value of loss random variable
e. Expected value
f. Variance

3. Continuous Payment Funding (7.3)
a. Discrete payment models
b. Continuous payment models

4. mthly Payment Funding (7.4)
a. Discrete payment models
b. Continuous payment models

5. Incorporation of Expenses (7.5)
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F. Reserves

1. Annual Payment Funding (8.1)
a. Prospective method
b. Retrospective method
c. Additional expressions
d. Random variable analysis
e. Continuous payment models
f. Contingent annuity model

2. Recursive Relationships (8.2)
a. Group deterministic analysis
b. Random variable analysis – cash basis
c. Random variable analysis – accrued basis

3. Continuous Payment Funding (8.3)
a. Discrete payment models
b. Continuous payment models
c. Random variable analysis

4. mthly Payment Funding (8.4)

5. Incorporation of Expenses (8.5)

6. Fractional Duration Reserves (8.6)

7. Non-Level Benefits and Premiums (8.7)
a. Discrete models
b. Continuous models

G. Multi-Life Models

1. Joint-Life Model (9.1)
a. Random variable xyT

b. SDF
c. CDF
d. PDF
e. HRF
f. Conditional probabilities
g. Moments

2. Last-Survivor Model (9.2)

a. Random variable xyT

b. CDF
c. SDF
d. PDF
e. HRF
f. Moments

g. Relationships of xyT and xyT



-5-

3. Contingent Probability Functions (9.3)

4. Contingent Multi-Life Contracts (9.4)
a. Contingent payment models
b. Contingent annuity models
c. Premiums and reserves
d. Reversionary annuities
e. Contingent insurance functions

5. Random Variable Analysis (9.5)
a. Marginal distributions
b. Covariance
c. Joint functions
d. Joint-life
e. Last-survivor

6. Common Shock (9.6)

H. Multiple-Decrement Models

1. Discrete Models (10.1)
a. Multiple-decrement tables
b. Random variable analysis

2. Competing Risks (10.2)

3. Continuous Models (10.3)

4. Uniform Distribution (10.4)
a. Multiple-decrement context
b. Single-decrement context

5. Actuarial Present Value (10.5)

6. Asset Shares (10.6)

I. Poisson Process

1. Properties (11.3.1-11.3.3)

2. Mixture Process (11.3.4)

3. Nonstationary Process (11.3.5)

4. Compound Poisson Process (14.1)
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J. Multi-State Models

1. Review of Markov Chains (Appendix A)

2. Homogeneous Multi-State Process (10.7.1)

3. Nonhomogeneous Multi-State Process (10.7.2)

4. Daniel’s Notation (SN: M-24-05)
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Practice Questions

1. Let a survival distribution be defined by 2( ) ,XS x ax b  for 0 .x k  If the expected value of X

is 60, find the median of X.

2. Given that ,x kx  for all 0,x  and 10 35 .81,p  find the value of 20 40.p

3. If X has a uniform distribution over (0, ), show that
1 .50

,x

x
x

m
m




 for 1.x  

4. Given that 0e 25 and ,x x  for 0 ,x   find the value of 10( ),Var T where 10T

denotes the future lifetime random variable for an entity known to exist at age 10.

5. Given the UDD assumption and the values 80.5 .0202,  81.5 .0408,  and 82.5 .0619,  find

the value of 2 80.5.q

6. Let x k  denote a constant force of mortality for the age interval ( , 1).x k x k   Find the value

of :3
,

x
e the expected number of years to be lived over the next three years by a life age x, given

the following data:

k x ke   1 x k

x k

e 









0 .9512 .9754
1 .9493 .9744
2 .9465 .9730

7. Given the following excerpt from a select and ultimate table with a two-year select period, and

assuming UDD between integral ages, find the value of .90 [60] .60 .q 

x [ ]x [ ] 1x  2x 2x 

60 80,625 79,954 78,839 62
61 79,137 78,402 77,252 63
62 77,575 76,770 75,578 64

8. Calculate the value of 51( ),Var Z given the following values:

51 50

2 2
51 50 50

.004 .02

.005 .98

A A i

A A p

  

  
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9. Let the age-at-failure random variable X have a uniform distribution with 110.  Let ( )Zf z denote

the PDF of the random variable 40.Z Calculate the value of (.80),Zf given also that .05. 

10. (a) Show that 1 1( ) ( ) .x x x xIA A E IA   

(b) Calculate the value of 36( ) ,IA given the following values:

35 35:1

35 35

( ) 3.711 .9434

.1300 .9964

 

 

IA A

A p

11. Assuming failures are uniformly distributed over each interval ( , 1),x x calculate the value of
2 1

: 2x
A given the values .12,i  .10,xq  and 1 .20.xq  

12. Find the value of ,xA given the values 10,xa  2 7.375,xa  and ( ) 50.
xT

Var a 

13. Let S denote the number of annuity payments actually made under a unit 5-year deferred whole
life annuity-due. Find the value of 5( | ),xPr S a  given the following values:

:5
4.542

x
a  .04i  .01,x t   for all t

14. Show that, under the UDD assumption
( )

.x
x

i i d a
A

 


 



15. Calculate the probability that the present value of payments actually made under a unit 3-year
temporary increasing annuity-due will exceed the APV of the annuity contract, given the
following values:

.80xp  1 .75xp   2 .50xp   .90v 

16. Calculate the value of :1000 ( ),x nP A assuming UDD over each interval ( , 1)x x and the

following values:

: .804 .600 .04n xx nA E i  

17. For a unit whole life insurance, let xL denote the present value of loss random variable when the

premium is chosen such that [ ] 0,xE L  and let *
xL denote the present value of loss random

variable when the premium is chosen such that *[ ] .20.xE L   Given that ( ) .30,xVar L  find

the value of *( ).xVar L
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18. If the force of interest is  and the force of failure is ( )x  for all x, show that

2
[ ( )] ,xVar L A 

 
 with continuous premium rate determined by the equivalence principle.

19. Consider a 20-pay unit discrete whole life insurance, with expense factors of a flat amount .02 each
year, plus an additional .05 in the first year only, plus 3% of each premium paid. Find the gross
annual premium for this contract, given the values 20,xa  :20 10,xa  and .04.d 

20. Calculate the value of 2 1:3 :3
1000( ),

x x
V V given the following values:

1:3
.33251 .06 100 90x xx

P i     

21. A 2-year term insurance of amount 400 is issued to (x), with benefit premium determined by the
equivalence principle. Find the probability that the loss at issue is less than 190, given the values

1 1
1:2 :2

.185825, .04145, and .10.
x x

P V i  

22. A 10-pay whole life contract of amount 1000 is issued to (x). The net annual premium is 32.88
and the benefit reserve at the end of year 9 is 322.87. Given that .06.i  and 9 .01262,xq   find

the value of 10.xP 

23. Let 11 denote the accrued cost random variable in the 11th year for a discrete whole life

insurance of amount 1000 issued to (40). Calculate the value of 11 40( | 10),Var K  given the

following values:

40 50 51.06, 14.8166 13.2669 13.0803i a a a     

24. Let 0 ( )xL A denote the present value of loss at issue for a fully continuous whole life contract

issued to (x). Find the value of 20 ( ).xV A given the following values:

2
0 20[ ( )] .20 .30 .70x x xVar L A A A   

25. A 2-year endowment contract issued to (x) has a failure benefit of 1000 plus the reserve at the end
of the year of failure and a pure endowment benefit of 1000. Given that .10,i  .10,xq  and

1 .11,xq   calculate the net level benefit premium.

26. Let xT and yT be independent future lifetime random variables. Given .080, .004,x yq q 

21 ,t x xp t q   and 21 ,t y yp t q   both for 0  t  1, evaluate the PDF of xyT at .50.t 
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27. Let 80T and 85T be independent random variables with uniform distributions with 100.  Find

the probability that the second failure occurs within five years from now.

28. A discrete unit benefit contingent contract is issued to the last-survivor status ( ),xx where the

two future lifetime random variables xT are independent. The contract is funded by discrete net

annual premiums, which are reduced by 25% after the first failure. Find the value of the initial net
annual premium, under the equivalence principle, given the following values:

.40 .55 10.00x xx xA A a  

29. The APV for a last-survivor whole life insurance on ( ),xy with unit benefit paid at the instant of

failure of the status, was calculated assuming independent future lifetimes for ( )x and ( )y with

constant hazard rate .06 for each. It is now discovered that although the total hazard rate of .06 is
correct, the two lifetimes are not independent since each includes a common shock hazard factor
with constant force .02. The force of interest used in the calculation is .05.  Calculate the
increase in the APV that results from recognition of the common shock element.

30. The career of a 50-year-old Professor of Actuarial Science is subject to two decrements.
Decrement 1 is mortality, which is governed by a uniform survival distribution with 100,  and

Decrement 2 is leaving academic employment, which is governed by the HRF (2) .05,y  for all

50.y  Find the probability that this professor remains in academic employment for at least five

years but less than ten years.

31. Find the value of (1) ,xp given (1) .48,xq  (2) .32,xq  (3) .16,xq  and each decrement is uniformly

distributed over ( , 1)x x in the multiple-decrement context.

32. Decrement 1 is uniformly distributed over the year of age in its associated single-decrement table

with (1) .100.xq  Decrement 2 always occurs at age .70x  in its associated single-decrement

table with (2) .125.xq  Find the value of (2) .xq

33. Events occur according to a Poisson process with rate 2 per day.

(a) What is the expected waiting time until the tenth event occurs?
(b) What is the probability that the 11th event will occur more than two days after the 10th event?

34. During a certain type of epidemic, infections occur in a population at a Poisson rate of 20 per day,
but are not immediately identified. The time elapsed from onset of the infection to its
identification is an exponential random variable with mean of 7 days. Find the expected number
of identified infections over a 10-day period.
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Solutions to Practice Questions

1. We have (0) 1S b  and 2( ) 1 0.S k ak   Thus 2
1 ,

k
a  so

2

2( ) 1 .x
k

S x   Then

3

20

1 2[ ] ( ) 60,
3 33

k kE X S y dy k k k k
k

      

so 90,k  and thus 1 .
8100

a  Finally,
2 1( ) 1 ,

8100 2
mS m    which leads to 2 4050,m  and

45 2.m 

2. Recall that

00 .
x tt

yx r dydr
t xp e e 


    

Here
45

35

2 21 1
2 2

10 35

(45) (35) 400

.81

,

ky dy

k k k

p e

e e

 

    

 

 

and

 

60
40

2 21 1
2 2

20 40

(60) (40)

1000

2.5400 2.5(.81) .59049.

ky dy

k k

k

k

p e

e

e

e

 

   











  

3. If X is uniform, then 1
x x  and

( )
1 ,

( )
t x

S x t tp
S x x


  


so that 1 .t x x t xp     From Equation (3.62) we have

1

0
1

0
1 1
0 0

11

00

1
1 .

.50( )

t x x t
x

t x

x
x t

x

p dt
m

p dt

dt dt

xx t dtdt












 







 
  

   

Then

1
1 1 1 ,

1 .50 .50 .50.50
x

x
x

x m

m
m x x


 

   
    

as required.
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4. The survival model is uniform. The fact that
o

0 25e  tells us that 50.  Then 10T is uniform over

(0, 40), so its variance is
2(40)

133.33.
12

 

5. First we use 80
80.5

80
.0202

1 .50

q

q
  


to solve for 80 .02.q  Similarly we find 81 .04q  and

82 .06.q  Arbitrarily let 80 1000, so

81 (.98)(1000) 980, 

82 (.96)(980) 940.80, 

and

83 (.94)(940.80) 884.352. 

Then

82.5
2 80.5

80.5

1
2

1
2

(940.80 884.352)
1 1

(1000 980)

912.5761 .07821.
990

q


   


  




6. We start with
3o

:3
0

1 1 1

1 1 2
0 0 0

.

x t x

t x x t x x x t x

e p dt

p dt p p dt p p p dt  



   



  

Under the constant force assumption,

1
1 1

0 0 0

( ) 1
( ) .

ln ln

t
t x x

t x x
x x

p p
p dt p dt

p p


  

 
But

x
xp e  and

1 1 ,
ln

xx

x x

p e
p





 


so

1 2
1

o
:3

1 2

1 1 1

.9754 (.9512)(.9744) (.9512)(.9493)(.9730) 2.78084.

x x x
x x x

x
x x x

e e ee e e e
  

  

  

 


  
  

 

           
   

   
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7. .90 [60] .60 .40 [60] .60 .40 [60] .60 .50 [60] 1

[60] [60]
[60] 1

[60] [60]

(1 )

.40 .40
1 .50

1 .60 1 .60

q q q q

q q
q

q q

   



   

 
      

Here

[60] 1
[60]

[60]

79,954
1 1 .00832248

80,625
q


    





and

62
[60] 1

[60] 1

78,839
1 1 .01394552,

79,954
q 


    




so

.90 [60] .60
(.40)(.00832248)

1 (.60)(.00832248)

(.40)(.00832248)
1 (.50)(.01394552)

1 (.60)(.00832248

.0033457 (1 .0033457)(.50)(.01394552) .01029.

q  


 
   

   

8. Recall that 50 50 50 51.A v q v p A     Then

 

51 50 51 50 50 51

51 50 50

51

(1 )

.98 .021 .004,
1.02 1.02

A A A v q v p A

A v p v q

A

      

    

   

which implies 51 .60199.A 

Similarly,

2 2 2 2
51 50 51 50 50 51

2
51 50 50

2
51 2 2

(1 )

.98 .021 .005,
(1.02) (1.02)

A A A v q v p A

A v p v q

A

       

     

     
 

which implies 2
51 .41725.A 

Then

2 2 2
51 51 51( ) .41725 (.60199) .05486.Var Z A A    
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9. Since 40
40 ,TZ v we have the transformation tz v so ln .zt


 The transformation is decreasing

so we have

40 40

ln( ) .Z T
zF z S


  
  

But
40 40( ) 1 1

40 70T t
t tS t p


    


under a uniform distribution with 110.  Therefore,

40

ln
ln( ) 1 1 ,

70 3.50Z

z
zF z 

   

since .05.  Then

40 40

1( ) ( ) ,
3.50Z Z

df z F z
dz z

 

and finally

40

1(.80) .35714.
(3.50)(.80)

Zf  

10. (a) From Equation (5.51) we have

1 1 1

1 1 2

( ) | | ( 1) | .k k k
x k x k x k x

k k k

IA k v q v q k v q
  

  

  

          

Let 1r k  so 1.k r  Then

1

1

1 1 1 1

1

( ) |

| ( ) .

r
x x r x

r

r
x x r x x x x

r

IA A r v q

A v p r v q A E IA








  



   

       





(b) Note that 35:1 .9434.A v  Then

1 35 35 (.9434)(.9964) .94000.E v p   

Using the result from part (a), we have

35 35 1 35 36( ) ( ) .IA A E IA  

Then

35 35
36

1 35

( ) 3.711 .130( ) 3.80957.
.940

IA A
IA

E

   
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11. The relationship given by Equation (5.64b) holds for the second moment functions using an interest
rate based on 2 . We have

2
1 12 2
:2 :2 2 2 4

(1.12) 1 (.90)(.20).10

ln(1.12) (1.12) (1.12)

1.12240(.07972 .11439) .21787.

x x
iA A


      
 

  

12. Recall that

2 2

2
( ) ( ) .

x

x x
xT

A A
Var a Var Y




 

We know that

1 1 10x xA a     

and
2 21 2 1 14.75 .x xA a     

Then

2 2

2 2

(1 14.75 ) (1 10 ) 5.25 100( ) 50,xVar Y
   

 

     

which solves for .035.  Finally

1 (.035)(10) .65.xA   

13. The force of mortality is constant, so t
t xp e  for all t. Then we can calculate

2
2

2 2

( ) ( ) 2

( ) [.01 ln(1.04)]

1

1

1 ( )

1 1 20.82075,
1 1

x x xa v p v p

e e e e

e e

e e

   

   

 

   

   

   

     

     

   

  
 

 





so

5 :5| 16.27875.x x xa a a    

Then 5| xS a  if 17 payments are made, which occurs if ( )x survives to age 21.x  This means

that

(21)(.01)
5 21( | ) .81058.x xPr S a p e   
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14. Recall that ,x x
iA A


  and 1 ,x xA d a    so we have

(1 )

.

x x

x

x

iA d a

i id a

i i d a



 

 

  

  

  







15. The APV of the contract is

2
2

2

1 2 3

1 (2)(.90)(.80) (3)(.90) (.80)(.75)

3.898.

x xAPV v p v p      

  



The present value of payments actually made is 1 2 2.80v  if only two payments are made,

and 22.80 3 5.23v  if all three payments are made. Then for the present value of payments

actually made to exceed the APV, survival to time 2t  is required, the probability of which is
(.80)(.75) .60.

16. We have

  :
:

: :

1000 (1000)(.804)
1000 .

x n
x n

x n x n

A
P A

a a
 

 

We calculate :x na from

:
:

1
,

x n
x n

A
a

d




where, in turn, we find :x nA from

1
: :

1 1
: :

.05 .600 804,
ln(1.05)

x n n xx n

n xx n x n

A A E

i A E A


 

      

which gives us 1
:

(.804 .600) ln(1.05)
.200.

.05x nA
 

  Then

1
: : .200 .600 .800,x n n xx nA A E    

so

: .04
1.04

1 .800 5.20x na  

and finally

 :
(1000)(.804)

1000 154.62.
5.20

x nP A  
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17. The condition [ ] 0xE L  implies .xP P Then

   

   

2
2 2

2
2 2

( ) 1

1

.30,

x
x x x

x x
x

P
Var L A A

d

A A
d a

   

  






so
2 2 2(.30)( ) .x x xA A d a   

Then observe that

 
 

* 1

(1 ) 1

1 .20,

x x

x

x x

P PE L A
d d

P Pd a
d d

P Pd a P a
d d

     

    

        



 

so 1 ( ) .20,x xP d a    or 1.20 .x
x

P d
a

 


Now observe that

   

 

 

2
* 2 2

2
2

2
2

2

( ) 1

(.30)( )

1.20 (.30)( )

(1.20) (.30) .43200.

x x x

x

x
x

PVar L A A
d

P d d a
d

d a
d a

   

 

 


 






18. From Example 7.5 we know that

( ) ,xP P A  

and from earlier results we know that

xA 
 




and
2 .

2xA 
 



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Then from Equation (7.24a) we have

   

   

2 2

2 2

2 2

2 2

2 2 2

2

3 2 2 3 2

2

( ) 1
2

2

( )

( 2 )

( 2 ) ( 2 )

( 2 )

2 2

( 2 )

, as required.
2

xVar L A   
    

   
    

   

   

      

  

      

  


 

 
          

      


 



   




   





19. The expense-augmented equation of value is

:20 :20.05 .02 .03 .x xx xG a A a G a       

Then

:20

.05 .02
(1 .03)

1 (.04)(20) .05 (.02)(20)

(.97)(10)

.06701.

x x

x

A a
G

a
 




  







20. The value of 1 :31000 xV is best calculated retrospectively as

 1 :3 :3
1 1

1

1 11000 1000

.33251 .101000 280.51.
.90(1.06) (.90)

xx x
x x

V P v q
E E



    

    
 

The value of 2 :31000 xV is best calculated prospectively as

 

 
2 :3 2:1 :3

1

1000 1000

1000 (1.06) .33251 610.89.

x x xV A P



 

  

Then the difference is

610.89 280.51 330.38. 
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21. The loss at issue, denoted L, will be

400 (400)(.185825) 289.31
1.10

L   

if failure occurs in the first year, which happens with probability .xq The loss will be

 2
400 74.3374.33 188.68

1.101.10
L    

if failure occurs in the second year, which happens with probability 1.x xp q  Certainly the loss will

be less than 190 if ( )x survives to age 2,x  so we can conclude that the loss is less than 190 with

probability .xp

To find xp we first use

1
1 1:2 .185825 .04145,xxV v q    

which solves for 1 .25.xq   Then we use

1

2 2
1
:2

2

1 .25
1.10 1.10(1.10) (1.10)

1.10 1.101 1

(1.10)(1 ) .25
.185825,

(1.10) 1.10

x x x x x

x xx

x x

x

q p q p p

p pP

p p

p

 
 

 
 

 
 



which solves for .83.xp 

22. Using the recursive relationship

9 9 10 9( )(1 ) 1000 ,x xV P i q V p     

we have

10(322.87 32.88)(1.06) 12.62 (.98738),V  

which solves for 10 369.13.V  At duration 10 the contract is paid up, so the reserve

prospectively is 101000 369.13.xA   Then

10
10

10 1 .36913
.06/1.06

.36913 .03312.x
x

x

A
P

a



 

  

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23. From Equation (8.39) we have

2 2
11 40 11 50 50( | 10) (1 ) .Var K v V q p     

Here we have

51
11 11 40

40
1000 1000 1 117.19.

a
V V

a
      
 




To find 50p we use 50 50 511 ,a v p a     so

50
50

51

( 1)(1 ) (12.2669)(1.06)
.99408.

13.0803

a i
p

a

 
  




Then

2 2
11 40( | 10) (1.06) (1000 117.19) (.99408)(.00592) 4081.93.Var K    

24. Let L denote 0 ( ).xL A Recall that
2 2

2 2 21 1( ) ( ) (.30 ) .20,
1

x x x
x x

Var L A A A
a A

                
so

2 2(.30 ) .20(1 2 )x x xA A A   

or
21.20 .40 .10 0,x xA A  

which solves for .50.xA  Then

20 20
20

1 .30( ) 1 1 1 .40.
.501

x x
x

x x

a A
V A

a A
 

      


25. When the failure benefit is a fixed amount plus the benefit reserve, we use the recursive relationship
approach. For the first year, where 0 0,V  we have

1 1 1(1 ) (1000 ) 1000 ,x x xP i q V p V q V      

so

1 (1 ) 1000 (1.10) 100.xV P i q P    

For the second year we have

1 1 2 1 2( )(1 ) (1000 ) ,x xV P i q V p V      

so

 
2 1 1

2 .10

( )(1 ) 1000

(1.10) 100 (1.10) 110 220.

xV V P i q

P P P s

   

      

But, prospectively, 2 1000,V  as we have
2 .10

1000 220 528.14.P
a
 


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26. The SDF of xyT is

2 2

2 4

(1 .080 )(1 .004 )

1 .084 .00032 ,

t xy t x t yp p p t t

t t

    

  

for 0 1.t  Then the PDF is given by

32(.084) .00128 ,t xy
d p t t
dt

  

and the PDF at .50t  is 3(2)(.084)(.50) (.00128)(.50) .08384. 

27. We seek the value of

      
  

5 580:85 80:85

5 80 5 85 5 80:85

1

1

5 5 5 51 1 1 1 1
20 15 20 15

15 10 15 10 11 .
20 15 20 15 12

q p

p p p

 

   

       

    

Alternatively,

5 5 80 5 8580:85
5 5 1 .
20 15 12

q q q    

28. The APV of the benefit is .x x xxxxA A A A   The APV of the premium stream is

.75 ( ) .75 (2 2 )

(1.50 .50 ).

xx xx xx x xxxx

x xx

P a P a a P a P a a

P a a

      

 

     

 

We use the given values of xA and xa to find d, from

.40 1 1 10 ,x xA d a d     

so .06,d  and then to find xxa from

1 .45 7.50.
.06

xx
xx

A
a

d


  

Then

2
1.50 .50

(2)(.40) .55

(1.50)(10.00) (.50)(7.50)

.02222.

x xx

x xx

A A
P

a a












 
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29. Under the assumption of independence, the APV is

.06 .06 .12 .38503.

.11 .11 .17x y xyxyA A A A      

Recognition of the common shock hazard means that x  .06y  as before, but the joint

hazard rate is now
* * .04 .04 .02 .10.xy x y         

Now the APV is

.06 .06 .10 .42424,

.11 .11 .15xyA    

so the difference is

30. We seek the value of ( ) ( )
5 1050 50 .p p  We have

  ( ) (1) (2) (.05)(5)
5 5 550 50 50

51 .70092,
50

p p p e      

and

  ( ) (.05)(10)
10 50

101 .48522,
50

p e   

so
( ) ( )

5 1050 50 .70092 .48522 .21570.p p    

31. Recall that
( ) (1) (2) (3) .96,x x x xq q q q    

so ( ) .04.xp   Then from Equation (10.26),

(1) ( )(1) ( ) / .48 / .96( ) (.04) .20.x xq q
x xp p

   

32. In the sub-interval ( , .70),x x  Decrement 2 cannot occur, so Decrement 1 is operating in a

single-decrement environment and is uniformly distributed. Therefore
(1)

.70 (.70)(.100) .070.xq   If we assume an arbitrary radix of ( ) 1000,x
  then we have 70

decrements in the interval so we have 930 survivors at age .70.x  Then there are
(930)(.125) 116.25 occurrences of Decrement 2 at age .70,x  and therefore in ( , 1],x x  so

the probability is

(2) 116.25 .11625.
1000xq  
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10 t

33. (a) The waiting time for the tenth event, denoted 10 ,S has a gamma distribution with parameters

10  and 2.   Then

10
10[ ] 5.
2

E S 


  

(b) The interarrival time for the eleventh event, denoted 11,T has an exponential distribution with

parameter 2.   Then

2 4
11( 2) .01832.Pr T e e    

34. Note that the process counting the number of infections occurring is a standard (homogeneous)
Poisson process with 20  (per day), so the expected number of infections would be 200 in a
10-day period. But we wish to count the number of identifications in the 10-day period, not the
number of actual infections. Let 0t  denote the start of the 10-day period.

0 t 10

For an infection occurring at time t, the probability of being identified by time 10 is (10 ) / 71 ,te 

since the time-to-identification has an exponential distribution with mean 7. Thus the rate
function for the process counting all occurring infections is the constant ( ) 20,t  but the rate

function for the process counting only infections that get identified by time 10 is the non-constant

(10 ) / 7( ) 20(1 ),tt e    

which identifies this process as a nonstationary (nonhomogeneous) Poisson process. Then the
expected number of identifications in the interval from 0t  to 10t  is given by

10

0

10 (10 ) / 7

0

10 10 10 / 7 / 7

0 0

10 1010 / 7 / 7
00

(10) ( )

20(1 )

20 20

20 20 (7 )

200 20(.23965)(7)(4.17273 1) 93.55161.

t

t

t

m t dt

e dt

dt e e dt

t e e



 







 

  

  

   





 


