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CHAPTER FIVE 
 

SURVIVAL MODELS 
(CONTINUOUS PARAMETRIC CONTEXT) 
 
 

A survival model is simply a probability distribution for a particular type of random variable. 
Thus the general theory of probability, as reviewed in Chapter 2, is fully applicable here. How-
ever the particular history of the survival model random variable is such that specific terminolo-
gy and notation has developed, particularly in an actuarial context. In this chapter (and the next) 
the reader will see this specialized terminology and notation, and recognize that it is only the 
terminology and notation that is new; the underlying probability theory is the same as that ap-
plying to any other continuous or discrete random variable and its distribution. 
 
In actuarial science, the survival distribution is frequently summarized in tabular form, 
which is called a life table.1 Because the life table form is so prevalent in actuarial work, we 
will devote a full chapter to it in this textbook (see Chapter 6). 
 
 
5.1   THE AGE-AT-FAILURE RANDOM VARIABLE 

  
We begin our study of survival distributions by defining the generic concept of failure. In any 
situation involving a survival model, there will be a defined entity and an associated concept of 
survival, and hence of failure, of that entity.2 Here are some examples of entities and their asso-
ciated random variables. 

(1) The operating lifetime of a light bulb. The bulb is said to survive as long as it keeps burn-
ing, and fails at the instant it burns out. 

(2) The duration of labor/management harmony. The state of harmony continues to survive 
as long as regular work schedules are met, and fails at the time a strike is called. (Con-
versely, we could model the duration of a strike, where the strike survives until it is set-
tled and workers return to the job. The settlement event constitutes the failure of the 
strike status.) 

(3) The lifetime of a new-born person. The person survives until death occurs, which con-
stitutes the failure of the human entity. This will be the most common example consid-
ered in this text. 

 
Let 0T  denote the continuous random variable for the age of the entity at the instant it fails. 

                                                 
1 Alternatively, the tabular model is also called a mortality table. 
2 Another term for failure is decrement. If an entity has a particular status, such as survival, then failure to retain 
that status is often described as being decremented from that status. This terminology is particularly useful in the 
context of multiple decrements, which we encounter in Chapters 13 and 14.  
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We assume that the entity exists at age 0, so the domain of the random variable 0T  is 0 0.T >  

We refer to 0T  as the age-at-failure random variable. We will consider the terms “failure” and 

“death” to be synonymous, so we will also refer to 0T  as the age-at-death random variable.3 
 
It is easy to see that the numerical value of the age at failure is the same as the length of time 
that survival lasts until failure occurs, since the variable begins at age 0, so we can also refer 
to 0T  as the time-to-failure random variable. (If failure occurs at exact age t, then t is also the 
time until failure occurs.) 
 
Later (see Section 5.3) we will consider the case where the entity of interest is known to 
have survived to some age 0.x >  Then the time-to-failure random variable, to be denoted by 

,xT  will not be identical to the age-at-failure random variable 0,T  although they will be re-

lated to each other by 0 .xT x T= +  When dealing with this more general case we will do our 
thinking in terms of the time-to-failure random variable. 
 
5.1.1  THE CUMULATIVE DISTRIBUTION FUNCTION OF 0T  

  
For the age-at-failure random variable 0,T  we denote its CDF by  
 
 0 0( ) ( ),F t Pr T t= ≤  (5.1) 
 
for 0.t ≥ 4 We have already noted, however, that 0 0T =  is not possible, so we will always 

consider that 0 (0) 0.F =  We observe that 0 ( )F t  gives the probability that failure will occur 
prior to (or at) precise age t for our entity known to exist at age 0. In standard actuarial nota-
tion,5 this probability is denoted by 0 ,t q  so we have 

 0 0 0( ) ( ).t q F t Pr T t= = ≤  (5.2) 
 
5.1.2  THE SURVIVAL DISTRIBUTION FUNCTION OF 0T  

  
The survival distribution function (SDF) for the survival random variable 0T  is denoted by  

0( ),S t  and is defined by 

 0 0 0( ) 1 ( ) ( ),S t F t Pr T t= − = >  (5.3) 
 
for 0.t ≥  Since we take 0 (0) 0,F =  it follows that we will always take 0 (0) 1.S =  The SDF 
gives the probability that the age at failure exceeds t, which is the same as the probability 
that the entity known to exist at age 0 will survive to age t. Since the notion of infinite sur-
vival is unrealistic, we consider that 
                                                 
3 In practice, age-at-failure is often used for inanimate objects, such as light bulbs or labor strikes, and age-at-
death is used for animate entities, such as laboratory animals or human persons under an insurance arrangement. 
4 In probability theory, it is customary to subscript the CDF symbol with the name of the random variable, which 
suggests the notation 

0
( )TF t  in this case. With the name of the random variable understood to be 0T  in this sec-

tion, we prefer the notation 0( )F t  to avoid the awkwardness of subscripting a subscript. 
5 As stated in the Preface, this text uses Standard International Actuarial Notation whenever possible. 
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 0lim ( ) 0
t

S t
→∞

=  (5.4a) 

and 
 0lim ( ) 1.

t
F t

→∞
=  (5.4b) 

In actuarial notation, the probability represented by 0 ( )S t is denoted 0 ,t p  so we have 

 0 0 0( ) ( ).t p S t Pr T t= = >  (5.5) 

In probability textbooks in general, the CDF is given greater emphasis than is the SDF. (Some 
textbooks do not even define the SDF at all.) But when we are dealing with an age-at-failure 
random variable, and its associated distribution, the SDF will receive greater attention. 
 
EXAMPLE 5.1   
 
Use both the CDF and the SDF to express the probability that an entity known to exist at age 
0 will fail between the ages of 10 and 20. 
 
SOLUTION   
 
We seek the probability that 0T  will take on a value between 10 and 20. In terms of the CDF 
we have 

0 0 0(10 20) (20) (10).Pr T F F< ≤ = −  

Since 0 0( ) 1 ( ),S t F t= −  then we also have  

 0 0 0(10 20) (10) (20).Pr T S S< ≤ = −   

5.1.3  THE PROBABILITY DENSITY FUNCTION OF 0T  
  

For a continuous random variable in general, the probability density function (PDF) is defined 
as the derivative of the CDF. Thus we have here 
 

 0 0 0( ) ( ) ( ),
d df t F t S t
dt dt

= = −  (5.6) 

 
for 0.t >  Consequently,  

 0 00
( ) ( )

t
F t f y dy=   (5.7) 

and 

 0 0( ) ( ) .
t

S t f y dy
∞

=   (5.8) 

Of course it must be true that 
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 00
( ) 1.f y dy

∞
=  (5.9) 

Although we have given mathematical definitions of  0 ( ),f t  it will be useful to describe 

0 ( )f t  more fully in the context of the age-at-failure random variable. Whereas 0 ( )F t  and 

0 ( )S t  are probabilities that relate to certain time intervals, 0 ( )f t relates to a point of time, 
and is not a probability. It is the density of failure at age t, and is therefore an instantaneous 
measure, as opposed to an interval measure. 
 
It is important to recognize that 0 ( )f t  is the unconditional density of failure at age t. By this 

we mean that it is the density of failure at age t given only that the entity existed at 0.t =  
The concept of conditional density is presented in the next subsection. 
 
5.1.4 THE HAZARD RATE FUNCTION OF 0T  

  
Recall that the PDF of 0 0, ( ),T f t  is the unconditional density of failure at age t. We now de-
fine a conditional density of failure at age t, with such density conditional on survival to age 
t. This conditional instantaneous measure of failure at age t, given survival to age t, is called 
the hazard rate at age t, or the hazard rate function (HRF) when viewed as a function of t. 
(In some textbooks the hazard rate is called the failure rate.) It will be denoted by 0 ( ).tλ  
 
In general, if a conditional measure is multiplied by the probability of obtaining the condi-
tioning event, then the corresponding unconditional measure will result. Specifically, 
 
 (Conditional density of failure at age t, given survival to age )t  
 ×  (Probability of survival to age t) 
 = (Unconditional density of failure at age ).t   
 
Symbolically this states that  

 0 0 0( ) ( ) ( ),t S t f tλ ⋅ =  (5.10) 
or 

 0
0

0

( )
( ) .

( )

f tt
S t

λ =  (5.11) 

 
Equations (5.11) and (5.6) give formal definitions of the HRF and the PDF, respectively, of the 
age-at-failure random variable. Along with the definitions it is also important to have a clear 
understanding of the conceptual meanings of 0 ( )tλ  and 0 ( ).f t  They are both instantaneous 

measures of the density of failure at age t; they differ from each other in that 0 ( )tλ  is condi-

tional on survival to age t, whereas 0 ( )f t  is unconditional (i.e., given only existence at age 0). 
 
In the actuarial context of survival models for animate objects, including human persons, failure 
means death, or mortality, and the hazard rate is normally called the force of mortality. We will 
discuss the actuarial context further in Section 5.1.6 and in Chapter 6.  
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Some important mathematical consequences follow directly from Equation (5.11). Since 

0 0( ) ( ),d
dtf t S t= − it follows that 

 

 
0

0 0
0

( )
( ) ln ( ).

( )

d
dt S t dt S t
S t dt

λ
−

= = −  (5.12) 

 
Integrating, we have  
 

 0 00
( ) ln ( ),

t
y dy S tλ = −  (5.13) 

or 

 0 00
( ) exp ( ) .

t
S t y dyλ = −    (5.14) 

 
The cumulative hazard function (CHF) is defined to be 
 
 

 0 0 00
( ) ( ) ln ( ),

t
t y dy S tΛ λ= = −  (5.15) 

so that 
 

 0 ( )
0 ( ) .tS t e Λ−=  (5.16) 

 
EXAMPLE 5.2 
 
An age-at-failure random variable has a distribution defined by 
 

1/2
0 ( ) 1 .10(100 ) ,F t t= − −  

 
for 0 100.t≤ ≤   Find (a) the PDF and (b) the HRF for this random variable. 
 
SOLUTION 
 
(a) The PDF is given by 
 

 1/2 1/2
0 0( ) ( ) (.10)(.50)(100 ) ( 1) .05(100 ) .

df t F t t t
dt

− −= = − − ⋅ − = −  

        
(b) The HRF is given by 
 

 
1/2

10
0 1/2

0

( ) .05(100 )
( ) .50(100 ) .

( ) .10(100 )

f t tt t
S t t

λ
−

−−= = = −
−
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5.1.5   THE MOMENTS OF THE AGE-AT-FAILURE RANDOM VARIABLE 0T  
  

The first moment, or expected value, of a continuous random variable defined on [0, )∞ is 
given by 
 

 0 00
[ ] ( ) ,E T t f t dt

∞
= ⋅  (5.17) 

 
if the integral exists, and otherwise the first moment is undefined. Integration by parts yields 
the alternative formula 
 

 0 00
[ ] ( ) ,E T S t dt

∞
=   (5.18) 

 
provided 0lim ( ) 0.

t
t S t

→∞
⋅ =  Equation (5.18) is frequently used to find the first moment of an age-

at-failure random variable. 
 
The second moment of 0T  is given by 
 

 2 2
0 00

( ) ,E T t f t dt
∞  = ⋅    (5.19) 

 
if the integral exists, so the variance of 0T  can be found from 
 

 [ ]{ }22
0 0 0( ) .Var T E T E T = −   (5.20) 

 
Specific expressions can be developed for the moments of 0T  for specific forms of 0 ( ).f t  
This will be pursued in the following section. 
 
Another property of the age-at-failure random variable that is of interest is its median value. 
We recall that the median of a continuous random variable is the value for which there is a 
50% chance that the random variable will exceed (and thus also not exceed) that value. 
Mathematically, y is the median of 0T  if 
 

 0 0
1

( ) ( ) ,
2

Pr T y Pr T y> = ≤ =  (5.21) 

 

so that 0 0
1
2( ) ( ) .S y F y= =  

 
5.1.6 ACTUARIAL SURVIVAL MODELS 

  
When the age-at-failure random variable is considered in an actuarial context, special sym-
bols are used for some of the concepts defined in this section. The hazard rate, now called 
the force of mortality, is denoted by ,tμ  rather than 0 ( ).tλ  Thus we have 
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0

0
0

( )
ln ( ).

( )t

d
dt S t d S t
S t dt

μ
−

= = −  (5.22) 

It is customary to denote the first moment of 0T  by 0 .e  Thus we have  

 0 0 00
[ ] ( ) .e E T t f t dt

∞ο = = ⋅  (5.23) 

Since 0eο  is the unconditional expected value of 0,T  given only alive at 0,t =  it is called the 
complete expectation of life at birth.6 
 
We recognize that the moments of 0T  given above are all unconditional. Conditional mo-
ments, and other conditional measures, are defined in Section 5.3, and the standard actuarial 
notation for them is reviewed in Chapter 6. 
 
EXAMPLE 5.3 
 
For the distribution of Example 5.2, find (a) 0[ ]E T  and (b) the median of the distribution. 
 
SOLUTION 
 
(a) The expected value is given by Equation (5.18) as 
 

 

100 1/2
0 0

1003/2 3/2
0

[ ] .10(100 )

2 2 200
(.10)(100 ) (.10)(100) .

3 3 3

E T t dt

t

= −

   = − − = =   
   


 

  
(b) The median is the value of y satisfying 1/2

0 ( ) .10(100 ) .50,S y y= − =  which solves for 
75.y =   

 

5.2   EXAMPLES OF PARAMETRIC SURVIVAL MODELS 
  

In this section we explore several non-negative continuous probability distributions that are 
candidates for serving as survival models. In practice, some distributions fit better than oth-
ers to the empirical evidence of the shape of a survival distribution, so we will comment on 
each distribution we present regarding its suitability as a survival model. 
 
5.2.1 THE UNIFORM DISTRIBUTION 

  
The continuous uniform distribution, defined in Section 2.3.1, is a simple two-parameter dis-
tribution with a constant PDF. The parameters of the distribution are the limits of the interval 
                                                 
6 The significance of the adjective “complete” will become clearer when we consider an alternative measure of 
the expectation of life in Sections 5.3.6 and 6.3.4. 
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on the real number axis over which it is defined, and its PDF is the reciprocal of that interval 
length. Thus if a generic random variable X is defined over the interval [ , ],a b  then 

1( ) ,X b af x −= for ,a x b≤ ≤  and ( ) 0Xf x = elsewhere. 

 
For the special case of the age-at-failure random variable, 0a = so b is the length of the in-
terval, as well as the greatest value of t for which 0 ( ) 0.f t >  When the uniform distribution is 

used as a survival model, the Greek ω  is frequently used for this parameter (which then rep-
resents the maximum survival age), so the distribution is defined by 

 0
1

( ) ,f t
ω

=  (5.24) 

 
for 0 .t ω< ≤  The following properties of the uniform distribution easily follow, and should 
be verified by the reader: 
  

 0 00
( ) ( )

t tF t f y dy
ω

= =  (5.25) 

 

 0 0 0( ) 1 ( ) ( )
t

tS t F t f y dy
ω ω

ω
−= − = =  (5.26) 

 0
0

0

( ) 1
( )

( )

f tt
S t t

λ
ω

= =
−

 (5.27) 

 

 0 00
[ ] ( )

2
E T t f t dt

ω ω= ⋅ =  (5.28) 

 

 [ ]{ }
2

22
0 0 0( )

12
Var T E T E T ω = − =   (5.29) 

 
The uniform distribution, as a survival model, is not appropriate over a broad range of age, at 
least as a model for human survival. It is of historical interest, however, to note that it was the 
first continuous probability distribution to be suggested for that purpose, in 1724, by Abraham 
de Moivre. As a result, actuarial literature and exams often refer to the uniform distribution as 
“de Moivre’s law.”  
 
The major use of this distribution is over short ranges of time (or age). We will explore this 
use of the uniform distribution quite thoroughly in Section 6.5.1. 
 
5.2.2 THE EXPONENTIAL DISTRIBUTION 

  
This very popular one-parameter distribution (see Section 2.3.3) is defined by its SDF to be 
 

 0 ( ) ,tS t e λ−=  (5.30) 
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for 0t >  and 0.λ >  It then follows that the PDF is 
 

 0 0( ) ( ) ,tdf t S t e
dt

λλ −= − = ⋅  (5.31) 

so that the HRF is 

 0
0

0

( )
( ) ,

( )

f tt
S t

λ λ= =  (5.32) 

 
a constant. In the actuarial context, where the hazard rate is generally called the force of 
mortality, the exponential distribution is referred to as the constant force distribution. 
 
The exponential distribution, with its property of a constant hazard rate, is frequently used in 
reliability engineering as a survival model for inanimate objects such as machine parts. Like 
the uniform distribution, however, it is not appropriate as a model for human survival over a 
broad range, but might be used over short intervals, such as one year, due to its mathematical 
simplicity. This will be explored in Section 6.5.2. 
 
5.2.3 THE GOMPERTZ DISTRIBUTION 

  
This distribution was suggested as a model for human survival by Gompertz [9] in 1825. The 
distribution is usually defined by its force of mortality as 

 ,t
t Bcμ =  (5.33) 

for 0, 0,t B> > and 1.c >  Then the SDF is given by 
 

 0 0
( ) exp exp (1 ) .

ln

t y tBS t Bc dy c
c

  = − = −       (5.34) 

 
The PDF is given by 0 ( ),t S tμ ⋅  and is clearly not a very convenient mathematical form. A 
closed-form expression for the mean of the distribution, 0[ ],E T does not exist, but the mean 
can be approximated by numerical integration with a large finite upper limit replacing the 
actual upper limit of infinity. 
 
5.2.4 THE MAKEHAM DISTRIBUTION 

  
In 1860 Makeham [19] modified the Gompertz distribution by taking the force of mortality 
to be 
 

 ,t
t A Bcμ = +  (5.35) 

 
for 0, 0, 1,t B c> > > and .A B> −  Makeham was suggesting that part of the hazard at any 
age is independent of the age itself, due, for example, to the risk of accident, so a constant 
was added to the Gompertz force of mortality. 



68    CHAPTER FIVE  
 

The SDF for this distribution is given by 

 0 0
( ) exp ( ) exp (1 ) .

ln

t y tBS t A Bc dy c At
c

  = − + = − −       (5.36) 

Again it is clear that the PDF for this distribution is not mathematically tractable. As with the 
Gompertz distribution, there is no closed-form expression for 0[ ],E T  although it can also be 
approximated by numerical integration.7  
 
5.2.5  SUMMARY OF PARAMETRIC SURVIVAL MODELS 

  
We have briefly explored four distributions here: two (uniform and exponential) which are 
mathematically simple, and two (Gompertz and Makeham) which are not. For many illustra-
tions, where we wish to avoid mathematical complexity, we will use the uniform or the ex-
ponential for illustrative purposes only, not necessarily suggesting that they are applicable in 
practice. The exponential distribution has been applied in many situations not involving 
healthy human lives, and has been widely used in those situations. 
 
 
5.3  THE TIME-TO-FAILURE RANDOM VARIABLE 

  
In Section 5.1 we defined a continuous random variable, denoted 0,T  which measured the 
length of time from age 0 until failure occurs. Now we turn to the case where our entity of in-
terest is known to have survived to age x, where 0,x > and we wish to consider the random 
variable for the additional time that the entity might survive beyond age x. We denote this 
random variable by ,xT  and note that its domain is 0.xT >  We define the random variable 

xT  to be the time-to-failure random variable for an entity known to be alive (i.e., known to 

have not yet failed) at age x. We will use the notation ( )x  to denote the entity known to be 
alive at age x.8 
 
If xT  is the random time-to-failure for an entity alive at age x, it follows that the age-at-
failure will be xT  more than age x, so we have the relationship 0 xT x T= +  between our two 
basic random variables. This is illustrated in the following figure. 

 
   xT    0T  
 

  x  xx T+  

FIGURE 5.1 
 

Rather than develop separate distributions for xT  for each different value of x, we will simply 

calculate probability values for xT  from the distribution of 0.T  (An exception to this will be 
explored in Section 5.4.) 

                                                 
7 A generalization of the Makeham distribution is presented in Exercise 5-10. 
8 The time until failure of ( )x  can also be called the future lifetime of ( ),x  so xT  is therefore often called the 
future lifetime random variable for the entity ( ).x   
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THE LIFE TABLE 
(DISCRETE TABULAR CONTEXT) 
 
 
 
In this chapter we describe the nature of the traditional life table, showing that it can have all 
the properties of the survival models described in Chapter 5. When a survival model is pre-
sented in the life table format, it is customary to use notation and terminology which differ 
somewhat from that presented in Chapter 5. A major objective of this chapter will be to 
show clearly the correspondence between notation used in the probability model and that 
used in the life table model. 
 
The reader should realize that life tables were developed by actuaries independently from (and a 
century earlier than) the development of the statistical theory of survival models as probability 
distributions1. For this reason, traditional life table notation and terminology will not tend to 
reveal the stochastic nature of the model as clearly as is done by the probability model in Chap-
ter 5. By showing the correspondence of the life table symbols to those of the probability model, 
we intend to correct this. 

 
6.1   DEFINITION OF THE LIFE TABLE 

 
 
The life table can be defined as a table of numerical values of 0 ( )S x  for certain values of x 
(which we now prefer to use instead of t). Table 6.1 illustrates such a table. 

TABLE 6.1 

x  0 1 2 3 4  109 110 

0 ( )S x  1.00000 .97408 .97259 .97160 .97082   .00001 .00000

Typically a complete life table shows values of 0 ( )S x  for all integral values of , 0,1,x x =  . 
Since 0 ( )S x  is represented by these values, it is clear that a practical upper limit on x must be 
adopted beyond which values of 0 ( )S x  are taken to be zero. Traditionally, ω is used for the 
smallest value of x for which 0 ( ) 0.S x =  Then 0 ( 1) 0,S ω− >  but 0 ( ) 0.S ω =  In Table 6.1, 

110.ω =  
 
From Table 6.1, we can calculate the conditional probabilities represented by n xp  and n xq  
for integral x and n. However, these are the only functions that can be determined from the 
tabular model. Functions such as 0 0( ), ( ),f x xλ  and xe cannot be determined from the tabu-
lar model unless we expand the model by adopting assumed values for 0 ( )S x  between adja-
cent integers. We will pursue this in Section 6.6. 

                                                           
1 The first modern life table, called the Breslau Table, dates from 1693 and is attributed to Edmund Halley [10] of 
Halley’s Comet fame. 



86    CHAPTER SIX  
 

EXAMPLE 6.1    
 
From Table 6.1, calculate (a) the probability that a life age 0 will fail before age 3; (b) the 
probability that a life age 1 will survive to age 4.  
 
SOLUTION   
 
(a) This is given directly by 0 0(3) 1 (3) .02840.F S= − =   

(b) This conditional probability is given by 0

0

(4)
3 1 (1) .99665.S

Sp = =   

 
 
6.2   THE TRADITIONAL FORM OF THE LIFE TABLE 

 
 
The tabular survival model was developed by the early actuaries many years ago. The history of 
this model is reported throughout actuarial literature, and a brief summary of this history is pre-
sented by Dobson [9].  
 
Traditionally, the tabular survival model differs from Table 6.1 in two respects. Rather than 
presenting decimal values of 0 ( )S x , it is usual to multiply these values by, say, 100,000, and 

thereby present the 0 ( )S x  values as integers. Secondly, since these integers are not probabil-

ities (which 0 ( )S x  values are), the column heading is changed from 0 ( )S x  to ,xl  where l 
stands for number living, or number of lives. In this way the tabular survival model became 
known as the life table. 
 
Since 0 (0) 1,S =  then 0l  is the same as the constant multiple which transforms all 0 ( )S x  into 

.xl  This constant is called the radix of the table. Formally,  
 
 0 0 ( ).xl l S x= ⋅   (6.1) 
 
Using a radix of 100,000, we transform Table 6.1 into Table 6.1a. 
 

TABLE 6.1a 

x  0 1 2 3 4  109 110 

xl  100,000 97,408 97,259 97,160 97,082   1 0 

 
The basic advantage of the traditional form of the life table is its susceptibility to interpretation. If 
we view 0 100,000l =  as a hypothetical cohort group of newborn lives, or other new entities such 

as lightbulbs, electronic devices, or laboratory animals, then each value of xl  represents the survi-
vors of that group to age x, according to the model. This is a convenient, deterministic, interpreta-
tion of the model. Of course, since 0 0 ( ),xl l S x= ⋅  and 0 ( )S x  is a probability, then xl  is really 

the expected number of survivors to age x out of an original group of 0l  new entities. This 

connection between 0 ( )S x  and xl  is also given in Chapter 1 of Jordan [14].  
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Although the basic representation of the tabular survival model is in terms of the values of  
,xl  it is customary for the table to also show the value of several other functions derived 

from .xl  We define 
 
 1,x x xd l l += −  (6.2)  

or, more generally,  

 .n x x x nd l l += −  (6.3) 
 
Since xl  represents the size of the cohort at age x, and x nl +  is the number of them still sur-

viving at age ,x n+  then clearly n xd  gives the number who fail (or die) between ages x and 

.x n+  (This portrayal of number dying explains the frequent historical reference to these 
models as mortality tables.) Furthermore, 
 

 ,x
x

x

dq
l

=  (6.4) 

or, more generally, 

 n x
n x

x

dq
l

=  (6.5) 

 
gives the conditional probability of failure, given alive at age x. Finally, we have 
 

 1 x n x x n
n x n x

x x

l d lp q
l l

+−
= − = =  (6.6) 

 
as the conditional probability of surviving to age ,x n+  given alive at age x. With 1,n =  we 
have the special case 
 

 1 .x
x

x

lp
l
+=  (6.7) 

 
Recall that the conditional probabilities n xp  and n xq  were defined in Section 5.3 in terms of 

0 ( ).S x  The consistency of those definitions with the ones presented in this section is easily seen 

since xl  is simply 0 0 ( ).l S x⋅  We redefined n xp  and n xq  in terms of xl  here simply to complete 
our description of the life table form of the survival model. 
 
 
EXAMPLE 6.2    
 
From Table 6.1a, find (a) the number who fail between ages 2 and 4; (b) the probability that 
a life age 1 will survive to age 4. 
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SOLUTION  
 
(a)  This is given by 2 2 2 4 177.d l l= − =  

(b)  This is given by 4

1
3 1 .99665.

l
lp = =  (Compare with part (b) of Example 6.1.)  

 
 
6.3   OTHER FUNCTIONS DERIVED FROM xl  

 
 
Although a life table only presents values of xl  for certain (say, integral) values of x, we 

wish to adopt the view that the xl  function which produces these values is a continuous and 

differentiable function. In other words, we assume that a continuous and differentiable xl  

function exists, but only certain values of it are presented in the survival model. The reason 
we make this assumption is that there are several other important functions that can be de-
rived from xl  if xl  is continuous and differentiable. 
 
If values of xl  are known only at integral x, the question of how to evaluate these additional 
functions then arises, and the usual way to accomplish this evaluation is to make an assump-
tion about the form of xl  between adjacent integral values of x.  
 
In this section we will derive these several new functions from xl  symbolically, assuming xl  
to be continuous and differentiable. In Section 6.6 we will discuss three common distribution 
assumptions, and show how they allow us to evaluate the functions of this section from a 
table of xl  values at integral x only. We will also interpret these distribution assumptions in 

terms of both xl  and 0 ( ).S x  
 
6.3.1  THE FORCE OF FAILURE 

  
The derivative of xl  can be interpreted as the absolute instantaneous annual rate of change of 

xl . Since xl  represents the number of survivors at age x, then the derivative, which is the annu-

al rate at which xl  is changing, gives the annual rate at which failures are occurring at age x. 

This derivative is negative since xl  is a decreasing function. To obtain the absolute magnitude 
of this instantaneous rate of failure, we will use the negative of the derivative. Finally, since the 
magnitude of the derivative depends on the size of xl  itself, we obtain the relative instantane-
ous rate of failure by dividing the negative derivative of xl  by xl  itself. Thus we have 
 

 ,
d

xdx
x

x

l
l

μ
−

=  (6.8) 

 
which we call the force of failure (or force of mortality) at age x. Since 0 0 ( ),xl l S x= ⋅  we see 
that Equation (6.8) is the same as 
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 0 0

0 0

( ) ( )
( ) .

( ) ( )

d
dx S x f xx
S x S x

λ
−

= =  (6.9) 

 
Thus the hazard rate and the force of failure are identical. 
 
If we multiply both sides of Equation (5.14) by 0l  and substitute yμ  for 0 ( ),yλ  we obtain 

 

 0 0 0 0
( ) exp .

x
x yl l S x l dyμ = ⋅ = ⋅ −    (6.10) 

 

In the life table context, 0 0 0( ) exp[ ]
x

x yS x p dyμ= = −   can be interpreted as a decremental 

factor that reduces the initial cohort of size 0l  to size xl  at age x. 
 
By a simple variable change we can write Equation (6.8) as 
 

 ,
d

x tdt
x t

x t

l
l

μ +
+

+

−
=  (6.8a) 

 
a form in which the force of failure will frequently be expressed. 
 
EXAMPLE 6.3   
 
Show that the force of failure, ,xμ  is the limiting value of the probability of failure over an 
interval divided by the interval length (in years), as the interval length approaches zero. 
 
SOLUTION   
 

Consider first a one-year interval, with .x
xx l

dq =  Then consider a half-year interval with 

1/ 2 1/ 2

1 21 2 .x x

x

x l l
l

q +−
⋅=  Now, in general, consider ,x x x x x

x

q l l
x lx

Δ Δ
ΔΔ

+−
⋅=  and show that 

0
lim .x xq

xxx
Δ
ΔΔ

μ
→

=  We 

have 

0 0

1 1
lim lim ,x x x x x x

x xx xx x x

l l l l d l
x l l x l dx

Δ Δ
Δ Δ

μ
Δ Δ

+ +
→ →

− −     = ⋅ = − =     ⋅     
 

 
by Equation (6.8).    
   

6.3.2  THE PROBABILITY DENSITY FUNCTION OF 0T  
  

With the force of failure, which is the same as the hazard rate, now defined, the next function to 
develop from xl  is the PDF of the age-at-failure random variable 0T  (Remember that we wish 
to show that the life table is a representation of the distribution of this random variable.) 
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From Equation (5.10) we have 0 0 0( ) ( ) ( ).f x x S xλ= ⋅  In the life table context, 0 ( ) xxλ μ=  

and 
0

0 ( ) .xl
lS x =  Thus we have, for 0,x ≥  

 

 0 0
0

( ) .x
x x x

lf x p
l

μ μ = = 
 

 (6.11) 

 

Also, from Equation (6.8), .x
d

x xdx l l μ= −  Dividing both sides by 0l  gives 

 0 0 .x x x
d p p
dx

μ= −  (6.12) 

 
EXAMPLE 6.4   
 

Show that  0 0 ( ) 1.f x dx
∞
 =  

 
SOLUTION   
 

Since 0 0( ) ,x xf x p μ=  we have 0 0 0 0| ,x x xp dx pμ
∞ ∞ = −  from Equation (6.12). Thus we have 

0 0 0 1,p p∞− =  since 0 0 1p =  and 0 0.p∞ =    
 

With the PDF in hand, we can now find 0[ ],E T  which we recall is denoted by 0 .eο  
(Throughout this and the following section, all expectations are assumed to exist.) We have 
 

 0 0 0 00 0
[ ] ( ) .x xe E T x f x dx x p dxμ

∞ ∞ο = = ⋅ = ⋅   (6.13) 

 
Integration by parts produces the alternative formula 
 

 0 0 00 0
0

1
[ ] .x xe E T p dx l dx

l
∞ ∞ο = = = ⋅   (6.14) 

  
The second moment of 0T  is found from 
 

 2 2
0 00

[ ] .x xE T x p dxμ
∞

= ⋅  (6.15a) 

 
Integration by parts produces 
 

 2
0 00 0

0

2
[ ] 2 .x xE T x p dx x l dx

l
∞ ∞

= ⋅ = ⋅ ⋅    (6.15b) 
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Then the variance of 0T  is given by 
 

 { }
2

22
0 0 0 0 0

0 0

2 1
( ) [ ] [ ] .x xVar T E T E T x l dx l dx

l l
∞ ∞ = − = ⋅ ⋅ − ⋅ 

 
   (6.16) 

 
6.3.3  CONDITIONAL PROBABILITIES AND DENSITIES 

  
We have already discussed the conditional probabilities n xp  and n xq  in terms of both 

0 ( )S x  and xl . 
  
Another conditional probability of some interest is denoted by | .n m xq  It represents the probabil-

ity that an entity known to be alive at age x will fail between ages x n+  and .x n m+ +  In terms 

of the probability notation of Chapter 5, | 0 0[( ) ( ) | ].n m xq Pr x n T x n m T x= + < ≤ + + >  This can 

also be expressed as the probability that an entity age x will survive n years, but then fail within 
the next m years. This way of stating the probability suggests that we can write 
 
 | .n m x n x m x nq p q += ⋅   (6.17) 

 
Here m x nq +  is the conditional probability of failing between ages x n+  and ,x n m+ +  given 

alive at age .x n+  In turn, n xp  is the conditional probability of surviving to age ,x n+  given 

alive at age x. Their product gives the probability of failing between ages x n+  and ,x n m+ +  

given alive at age x. In terms of xl , we have, from Equations (6.6) and (6.5), 

 | .x n m x n m x n
n m x

x x n x

l d dq
l l l
+ + +

+
= ⋅ =  (6.18a) 

 
When 1m =  we use the notation 

 | .x n
n x

x

dq
l

+=  (6.18b) 

Recall that |n xq  was defined in Section 5.3.6 as ( )xPr K n=  or *( 1),xPr K n= +  the probabil-

ity that an entity alive at age x would fail in the ( 1)stn+  year. 
 
EXAMPLE 6.5   
 
Show that | ,n m x n x n m xq p p+= −  and give an interpretation of this result. 

 
SOLUTION   
 
Since, from Equation (6.3), ,m x n x n x n md l l+ + + += −  then Equation (6.18a) becomes 

| .x n x n m
x

l
n m x n x n m xl

lq p p+ + +
+

−= = −  Since n xp  is the probability of surviving to age ,x n+  we 
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can think of it as containing the probability of surviving to any age beyond .x n+  If we remove 

from n xp  the probability of surviving to ,x n m+ +  which is ,n m xp+  we have the probability of 

surviving to ,x n+  but not to ,x n m+ +  which is | .n m xq   

 
 
Next we wish to explore the conditional PDF for death at age y, given alive at age x, where 

.y x>  From Equation (5.44) we know this conditional PDF is 0

0
0 0

( )
( )( | ) .f y

S xf y T x> =  Now 

from Equation (6.11) we have 
0

0
1( ) ,y ylf y l μ= ⋅  and from Equation (6.1) we have 

0
0 ( ) .xl

lS x =  Thus 

 0 0( | ) .y y
y x x y

x

l
f y T x p

l
μ

μ−> = =  (6.19a) 

 
Letting ,t y x= −  so ,y x t= +  we have 
 
 0 0( | ) ,t x x tf x t T x p μ ++ > =  (6.19b) 
 
the conditional PDF of the random variable for the length of future lifetime of an entity alive 
at age x. This conditional PDF is a very useful function for developing other results. 
 
If both numerator and denominator on the right side of Equation (6.8a) are divided by xl , we 
obtain 

 ,t x
x t

t x

d
dt p

p
μ +

−
=  (6.20) 

which is equivalent to  

 .t x t x x t
d p p
dt

μ += −  (6.21) 

 
The expected future lifetime of an entity alive at age x is given by 
 

 
0 0

[ ] ,x x t x x t t xe E T t p dt p dtμ
∞ ∞

+
ο = = ⋅ =   (6.22) 

 
by evaluating the first integral using integration by parts. The second moment of xT  is 
 
 2 2

0 0
[ ] 2 ,x t x x t t xE T t p dt t p dtμ

∞ ∞
+= ⋅ = ⋅   (6.23) 

 
again by using integration by parts on the first integral, so its variance is 
 

 { } ( )2
22

0 0
( ) [ ] [ ] 2 .x x x t x t xVar T E T E T t p dt p dt

∞ ∞
= − = ⋅ −   (6.24) 
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CHAPTER FIFTEEN 
 
MODELS WITH VARIABLE INTEREST RATES 
 
 
Thus far in the text, when calculating the actuarial present value (APV) for contingent pay-
ment models, including insurance products, we have treated time until failure and mode of 
failure as random variables. But we have always assumed that a single interest rate was valid 
throughout the life of the model, however long that might be. It can be risky to assume that 
interest rates will remain constant at today’s rates. Indeed some insurance companies around 
the world have experienced severe losses as a result of pricing products at interest rates that 
proved to be too optimistic. 
 
In this chapter we address contingent payment models using interest rates that vary with time. 
Sections 15.1 and 15.2 address models with deterministic contingent payment amounts eval-
uated using non-deterministic interest rates. The term structure of interest rates and implied for-
ward rates of interest are introduced in Sections 15.3 and 15.4. 
 
The treatment of topics in Chapter 15 follows a heuristic approach. To simplify the discussion 
in Sections 15.1 and 15.2, we make the assumption that the market consists only of one-period 
securities. For our discussion of interest rates, the only securities available for investment are 
one-period bonds that pay a single coupon plus principal at the end of the period. This as-
sumption enables us to introduce features of interest rate variability without having to deal 
with issues such as a term structure or partial-period payments. In addition, there is no distinc-
tion (in the absence of default) between the interest rate of a bond and the rate of return on that 
bond. In Sections 15.3 and 15.4 we broaden the discussion to include multi-period bonds, in-
cluding those with partial-period payments (coupons). This will enable us to develop the term 
structure of spot interest rates along with implied forward rates of interest. 
 
 
15.1 ACTUARIAL PRESENT VALUES USING VARIABLE INTEREST RATES 

  

Interest rates in the United States have varied substantially over time. Table 15.1 shows 
sample one-year U.S. Treasury interest rates between 1962 and 2009.1 This table gives a good 
indication of just how variable interest rates can be over time. In this section, we discuss one 
method for incorporating this variability into calculating the actuarial present value for 
contingent payment models. This method involves the construction of interest rate scenarios for 
the future. An interest rate scenario is a possible future path for interest rates. For example, 
Table 15.2 shows three illustrative interest rate scenarios for one-year interest rates in the first 
five years of a contingent contract. Each row represents a different scenario for the one-year 
interest rate in each year over the next five years. The pre-subscript j on the interest rate symbol 

                                                 
1 Source: www.ustreas.gov. 
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indicates the scenario from which that rate was taken. For example, 3 3 .04i = means that the 
interest rate in the third interest rate scenario in the third year is 4%. 
 

TABLE 15.1 

Year Rate Year Rate Year Rate 
1962 3.10% 1978   8.34% 1994 5.32% 

1963 3.36 1979 10.65 1995 5.94 

1964 3.85 1980 12.00 1996 5.52 

1965 4.15 1981 14.80 1997 5.63 

1966 5.20 1982 12.27 1998 5.05 

1967 4.88 1983 9.58 1999 5.08 

1968 5.69 1984 10.91 2000 6.11 

1969 7.12 1985  8.42 2001 3.49 

1970 6.90 1986  6.45 2002 2.00 

1971 4.89 1987  6.77 2003 1.24 

1972 4.95 1988  7.65 2004 1.31 

1973 7.32 1989  8.53 2005 2.79 

1974 8.20 1990   7.89 2006 4.38 

1975 6.78 1991   5.86 2007 5.00 

1976 5.88  1992   3.89 2008 3.17 

1977 6.08 1993   3.43 2009 0.40 

 
 

TABLE 15.2 

Scenario j 1j i  2j i  3j i  4j i  5j i  

1  6%  7%  8%  9%  10%
2 6 6 6 6 6 
3 6 5 4 3 2 

 
EXAMPLE 15.1  
 
For each of the three interest rate scenarios in Table 15.2, find the actuarial present value of 
a five-year pure endowment issued at age 65x =  for amount $1000. The mortality rates for 
each year of age are 65 .03,q =  66 .04,q =  67 .05,q =  68 .06,q =   and 69 .07.q =  

 
SOLUTION 
  
In each scenario, the APV is  
 

5
5 65 5 651000 1000( ),jE v p= ⋅
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where 5
j v  represents five years of discounting at interest rates given by Scenario j. Re-

gardless of the chosen scenario,  
 

 5 65 (.97)(.96)(.95)(.94)(.93) .7734.p = =  
 

We can find 5
1 ,v  for example, as 

 

 ( )( )( )( )( )5
1

1 1 1 1 1 .6809,
1.06 1.07 1.08 1.09 1.10

v = =  

 
so the APV under Scenario 1 is (1000)(.7734)(.6809) 526.61.=  Under Scenarios 2 and 3 the 
APV’s are 577.93 and 635.97, respectively. (The reader is asked to verify these results in 
Exercise 15-1.)   
 
We can imagine that an insurer who has priced a pure endowment contract assuming level 
interest rates of 6% (Scenario 2) will be unhappy if it chooses to invest the net single premium 
in one-year bonds, and the interest rates then emerge similarly to Scenario 3.2  
 
EXAMPLE 15.2  
 
Using the same mortality and interest assumptions as in Example 15.1, find the actuarial present 
value for a five-year term insurance of unit amount issued at age 65,x =  with benefit paid at the 
end of the year of failure. Find a separate APV for each of the three scenarios. 
 
SOLUTION 
  
We adapt Equation (7.8) to find the actuarial present value for the five-year term insurance 

under Scenario j, and we denote this APV by 1
65:5

.j A  

 

TABLE 15.3 

t Year t Rate 1
tv  1| 65t q− 1 1| 65

t
tv q−⋅

1 .06 .9434 .0300 .0283 
2 .07 .8817 .0388 .0342 
3 .08 .8164 .0466 .0380 
4 .09 .7490 .0531 .0398 
5 .10 .6809 .0582 .0396 

11 65:5
A  .1799 

 

                                                 
2 In practice, the situation is more complicated than that presented here, because the insurer will generally try to 
invest in securities with a maturity similar to that of the product from which the net single premium arose. In this 
case the insurer will only have to worry about current interest rates for bond cash flows requiring reinvestment. 
However, for some very long-term contracts such as whole life contingent annuities, whole life insurance, or long 
term care insurance, this problem can be serious. 
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The results of the calculation for Scenario 1 are shown in Table 15.3 in spreadsheet form. Note 

how the term kv  in Equation (7.8), which assumes a constant interest rate, is generalized to 

( ) 1

1
1

k
k

j tj t
iv −

=
+= Π  in the case of the thj  variable interest rate scenario. The APV under 

Scenario 1 is  1
1 65:5

.1799.A =   (The reader should repeat the steps depicted in Table 15.3 under 

Scenarios 2 and 3 to verify that 1
2 65:5

.1875A =   and 1
3 65:5

.1958.)A =  Note that the APV is 

higher for the lower interest rate scenarios.   
 
 
15.2   DETERMINISTIC INTEREST RATE SCENARIOS 

  
Interest rate scenarios used in actuarial analysis are of two distinct types. Deterministic 
scenarios, described in this section, are determined a priori and are often used to “stress” a 
product’s profitability in the event future interest rates are unfavorable. Scenarios of this type 
are sometimes prescribed by regulatory agencies to provide a test of sensitivity to interest rates 
that is common across products and companies. Stochastic scenarios are scenarios that are 
created using a stochastic interest rate simulator based on an assumed probability distribution 
for future interest rates. 
 
We address the deterministic scenarios in this section by studying a sample regulatory policy 
designed to test the interest sensitivity of insurance products. If a product “fails” the interest 
sensitivity test, the company selling the product must hold additional capital as contingent 
funds for adverse changes in interest rates. Although the example here is fictional, similar 
deterministic scenarios are performed in some jurisdictions as part of cash flow testing of 
products for interest sensitivity. 
 
EXAMPLE 15.3  
 
An annuity company sells the following two products: 
 
(a) A five-year annual payment temporary immediate annuity 

(b) A five-year pure endowment 
 
The national regulatory authority requires the following two-step interest rate test in order to 
determine if the annuity company must hold additional capital: 
 
(1) The net single premium (NSP) for each product is calculated under three deterministic 

interest rate scenarios: 
 
(i) Rates remain level at the current rate. 
(ii) Rates rise 1% per year until they reach twice the current rate, and then remain level 

in succeeding years. 
(iii) Rates fall 1% per year until they reach one-half the current rate, and then remain 

level in succeeding years. 
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(2) If the NSP under the falling interest rate scenario is 5% or more above the NSP in the 
level rate case, the company must hold additional capital. 
 

If the probability of death in any given year remains constant at .02xq =  and the current 
interest rate is 6%, determine whether this annuity company must hold additional capital for 
either product. 
 
SOLUTION 
  
(a) For the five-year temporary immediate annuity, we first calculate the NSP (or APV) in 

the level rate case, using Equation (8.21). We obtain 
 

( )5 5

:5
1 1

1 (.98) 3.9756,
1.06

t
t t

l l t xx
t t

a v p
= =

= ⋅ = ⋅ =   

 
where the pre-subscript l denotes the level interest rate case. For the falling interest rate 
case, denoted by the pre-subscript f, the NSP is given by 
 

5 5

:5
1 1

(.98) .t t t
f f t x fx

t t
a v p v

= =
= ⋅ = ⋅   

 
The calculation is summarized in Table 15.4 below. The reader should repeat the steps 
depicted in Table 15.4 to calculate the APV under the rising interest rate scenario, obtaining 
the value 

:5
3.8461r xa =  (see Exercise 15-3(a)). Since the falling interest rate scenario does 

not produce an APV more than 5% greater than under the level rate case, the annuity 
company does not need to hold additional reserves for its five-year temporary immediate 
annuity product. 

 

TABLE 15.4 

t Year t Rate t
f v  t xp  t

f t xv p⋅

1 .06 .9434 .9800 .9245 

2 .05 .8985 .9604 .8629 

3 .04 .8639 .9412 .8131 

4 .03 .8388 .9224 .7737 

5 .03 .8143 .9039 .7360 

:5f xa  4.1102 
 

(b) For the five-year pure endowment, we again calculate first the APV in the level interest 
case, obtaining 
 

( )5
5 51

5:5
1 (.98) .6755.

1.06l l xxA v p= ⋅ = ⋅ =  
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 Under the falling interest rate scenario, we have 5 .8143f v =  (from Table 15.4) along 

with the value  5
5 (.98) .9039,xp = =  so the APV for the five-year pure endowment is 

(.8143)(.9039) .7361.=  The ratio of the falling rate APV to the level rate APV is 
.7361
.6755 1.0897.=   

 
 Since the falling rate APV is more that 5% above the level rate APV, the annuity 

company is required to hold additional capital for each five-year pure endowment 
product that it sells.   

 
 
15.3   SPOT INTEREST RATES AND THE  
 TERM STRUCTURE OF INTEREST RATES 

 
 
We now drop the assumption made in Sections 15.1 and 15.2 that the market consists only of 
one-period securities, and move to a more realistic set of investment products. We assume 
that it is possible to buy interest-bearing securities of varying maturities. Also, we assume 
that some of these interest-bearing securities make periodic interest payments every six 
months and make an interest and principal payment at maturity. For the sake of simplicity, 
we assume that all of these securities are risk-free (i.e., they are certain to pay interest and 
principal with no chance of default), and we refer to all of them as bonds. Bonds with 
periodic interest payments are called coupon bonds whereas bonds with no periodic 
payments and a single payment at maturity are called zero-coupon bonds. There is a large 
market in United States Treasury securities fitting these descriptions. 
 
Table 15.5 shows available interest rates for coupon-bearing treasury securities of varying 
maturities on a particular date.3  
 

TABLE 15.5 

Maturity 
(in years) 

Nominal Annual Yield for 
Coupon-bearing Bonds (2)( )i  

0.5     2.44% 
1.0  2.60 
1.5  2.76 
2.0  2.93 

 
This table suggests that on the day in question, we could expect to purchase a treasury 
security with a maturity of six months at a yield of 2.44%.4 In other words, for an investment 
of $1000, we would expect to receive $1012.20 in six months. Note that the coupon 
payment, made in addition to the principal, is half the stated yield. A one-year bond 
purchased the same day would pay $13 in six months and $1013 at the end of one year. 

                                                 
3 Source: Daily Treasury Yield Curve Rates at www.ustreas.gov; 1.5 year yield is interpolated. 
4 In reality, such a security with exact yield and maturity dates may not be available on that day. 
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Similarly, a two-year bond would entitle the purchaser to three semi-annual payments of 
$14.65 and a final payment of $1014.65. 
 
The first important feature of this table is that bonds with differing maturities offer differing 
rates of interest. The extra yield for longer-term bonds reflects the loss of liquidity that 
investors suffer by committing their money for a longer period of time, and can be thought 
of as a type of liquidity premium. Differences in yield also reflect market expectations for 
what the future short-term rates of interest will be. On occasion, expectations for lower 
short-term rates in the future will offset the liquidity premium and longer maturities will 
have lower yields than shorter maturities.  
 
A second important feature of the table is that there is an implied set of zero-coupon bond 
interest rates for each maturity listed in the table, which can be derived from the coupon-
bearing bond yields using a method called bootstrapping. First, the zero-coupon bond yield 
for a maturity of six-months must equal that of the coupon-bearing bond, since both consists 
of only a single payment at that maturity. Therefore the nominal annual yield, convertible 
semiannually, for a six-month zero-coupon bond, denoted 0.5 ,z  is 0.5 2.440%,z =  or 1.220% 
as an effective semiannual rate. 
 
To calculate the yield for a zero-coupon bond which matures in one year, we use the six-
month zero-coupon rate to value the six-month coupon payment and the original price of the 
bond to determine the implied one-year zero-coupon rate. For example, the one-year bond 
described above pays $13 in six months and $1013 in one year for the price of $1000. 
Therefore the implied one-year zero-coupon yield, denoted 1.0 ,z  must satisfy 

( )1.0
2

2

13 10131000 ,
1.01220

1
z

= +
+

 

 
where .01220 is effective semiannual and 1.0z is nominal annual, convertible semiannually. 
From this we obtain 1.0 2.601%.z =  Similarly, 1.5z must satisfy 
 

( ) ( )1.5
2 3.02601

2 2

13.80 13.80 1013.801000 .
1.01220 1 1

z
= + +

+ +  

 
(The reader should note that the one-year zero-coupon rate was used for that maturity, rather 
than the one-year coupon-bearing rate.) From this we obtain 1.5 2.763%.z =  Finally, using  
 

( ) ( ) ( )2.0
2 3 4.02601 .02763

2 2 2

14.65 14.65 14.65 1014.651000 ,
1.01220 1 1 1

z
= + + +

+ + +  

 
we determine that 2.0 2.936%.z =  In summary, the bootstrap method produces the results 
shown in Table 15.6. 
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TABLE 15.6 

Maturity 
(in years) 

Nominal Annual Yield for
Coupon-bearing Bonds 

Nominal Annual Yield for 
 Zero-coupon Bonds 

0.5    2.44%    2.440% 
1.0 2.60 2.601 
1.5 2.76 2.763 
2.0 2.93 2.936 

 
Regarding Table 15.6, the dependence of available yields on years to maturity is referred to 
as the term structure of interest rates. The associated zero-coupon bond rates are often 
referred to as spot rates. Once a set of spot rates has been obtained, it is easy to value any set 
of cash flows, whether or not those cash flows are uniform. 
 
EXAMPLE 15.4  
 
To finance the construction of an auditorium, a college has agreed to make the following 
payments at the following maturity times: 
 

Payment $200,000 $50,000 $50,000 $100,000 
Maturity Today 6 months 12 months 24 months 

 
Using the term structure of interest rates in Table 15.6, calculate the net present value of 
these payments. 
 
SOLUTION 

We directly find  

( ) ( )2 4.02601 .02936
2 2

50,000 50,000 100,000
200,000 392,459.12.

1.01220 1 1
NPV = + + + =

+ +
        

EXAMPLE 15.5 
 
A client age 60 purchases a five-year term life insurance policy that will pay $1,000,000 at 
the end of the year of death. The client will fund the policy with level annual premiums, and 
the insurance company has the ability to lock in appropriate forward rates of interest on 
those premiums. Using the information in Table 15.7, calculate the net level annual premium 
for the policy. 
 
 TABLE 15.7 

Maturity 
(in years)

Annual Yield for  
Zero-coupon Bonds x xq

1.0  3.0% 60 .02 
2.0  4.0 61 .03 
3.0  5.0 62 .04 
4.0  6.0 63 .05 
5.0  7.0 64 .06 
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SOLUTION 
 
The most straightforward solution to this problem is to calculate the APV of the premium 
payments and set it equal to the APV of the insurance death benefit, using the equivalence 
principle. For a level annual premium, P, the APV of premium is 
 

 
2 3 4

60 2 60 3 60 4 6060:5
(1 ),P a P vp v p v p v p⋅ = + + + +

 
 
where each tv  value is calculated using the t-year spot rate. Using this and the mortality 
rates shown above, we have 

  

60:5 2 3 4

(.98)(.97) (.98)(.97)(.96) (.98)(.97)(.96)(.95).981 .
1.03 (1.04) (1.05) (1.06)

P a P  ⋅ = + + + + 
 

  

 
From this we find the APV of the premiums to be 4.3054 .P The APV of the death benefit is 
 

2 3 4 51
60 60 61 2 60 62 3 60 63 4 60 6460:5

,A vq v p q v p q v p q v p q= + ⋅ + ⋅ + ⋅ + ⋅
 

 
where, again, spot interest rates are used. (As an exercise, the reader should verify that 

1
60:5

.1527.)A =  Then the net level premium is 

 

 
(1,000,000)(.1527)

35,467.09.
4.3054

P = =   

 
 
15.4  FORWARD  INTEREST RATES  
 
For this section, we assume a financial environment in which investors can buy and sell 
zero-coupon bonds that pay interest at current spot rates in any dollar amount and with no 
transaction costs. In such an environment, current spot rates imply another set of interest 
rates that can be locked in today for future deposits. For example, suppose an investor 
simultaneously undertakes the following pair of transactions: 

 
Transaction A:  Buy a $1000 par value two-year zero-coupon bond 

paying 2.96% interest. 
 
Transaction B:  Sell a $1000 par value one-year zero-coupon bond 

paying 2.62% interest. 
 
With this pair of transactions, the investor has a net cash flow of zero today. In one year he 
must pay principal and interest on the one-year bond, and in two years he will receive 
principal and interest on the two-year bond. The resulting net cash flows experienced by the 
investor are shown in Table 15.8. 
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 TABLE 15.8 

Time (in years) Net Cash Flow 
0  $        0.00 
1  − 1026.20 
2  1060.08 

 
These are the same cash flows that would be experienced by an investor who agrees one year 
in advance to invest $1026.20 in a zero-coupon bond at 3.30% interest (except for some 
small round-off error). Therefore by purchasing and selling securities of differing maturities 
today, an investor can “lock in” a return on an investment one or more periods from now. In 
the current example, we say that the 3.30% interest rate obtained for an investment one year 
from now is the one-year forward one-year rate, since the interest rate obtained is for an 
investment one year from now (i.e., one year forward) and is obtained for a one-year 
security. When a similar set of transactions is implemented to lock in a rate n years from 
now on a   k-year zero coupon bond, the resulting rate is called the n-year forward k-year 
rate. We denote this rate by , .n kf

 
 
EXAMPLE 15.6 
 
Using the yields in Table 15.9, find all possible forward rates for forward securities with 
maturities of one, two, three, and four years. 
 
 TABLE 15.9 

Maturity 
(in years)

Annual Yield for 
Zero-coupon Bonds

1.0  3.0% 
2.0  4.0 
3.0  5.0 
4.0  6.0 
5.0  7.0 

 
SOLUTION 
 
We show here the calculations for 1,4f  and 2,2.f  (Calculations for other forward rates are 

similar, and are left to the reader as Exercise 15-12.) 1,4f  is the only forward four-year rate 

that can be calculated from the rates in the table. This rate is most easily calculated using the 
logic that an investor obtains the same total return either by buying a five-year zero-coupon 
bond, or by investing in a one-year bond and then investing the proceeds for four years at the 
one-year forward four-year rate. That is, 
 

 5 1 4
5 1 1,4(1 ) (1 ) (1 ) .z z f+ = + ⋅ +  (15.1) 

In this case we have 

 
5 1 4

1,4(1.07) (1.03) (1 ) ,f= ⋅ +   
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from which we find 1,4 8.024%.f = Similarly, f2,2  must satisfy 

 

 4 2 2
4 2 2,2(1 ) (1 ) (1 ) ,z z f+ = + ⋅ +  (15.2) 

 
from which we find 2,2 8.038%.f =  All of the forward rates, rounded to four decimal places, 

are shown in Table 15.10.  
 
 TABLE 15.10 

n ,1nf  ,2nf  ,3nf  ,4nf  

1.0  5.01%  6.01% 7.02% 8.02%
2.0  7.03  8.04 9.05 – 
3.0  9.06 10.07 – – 
4.0  11.10 – – – 

 
EXAMPLE 15.7  
 
A five-year pure endowment contract issued to a person age 60 is funded with level annual 
premiums and has a maturity benefit of $10,000. Premiums are payable at the beginning of 
each year, and the benefit is payable at the end of the fifth year. Table 15.11 shows mortality 
rates for a 60-year-old and forward rates that are currently available. Use this information to 
calculate the net level annual premium for the pure endowment. Note that 0,5 5.f z=  

 
 TABLE 15.11 

y ,5y yf −  x xq

0  4.0% 60 .02 
1  5.0 61 .03 
2  6.0 62 .04 
3  7.0 63 .05 
4  8.0 64 .06 

 
SOLUTION 
 
Since we are given forward rates, it will be easiest to determine the level annual premium 
retrospectively. The premiums must accumulate with interest and survivorship to total 
$10,000 at the end of the fifth year. That is, 
 

 
60:5

5 60 4 61 3 62 2 63 1 64

1 1 1 1 110,000 ,P s P E E E E E
 = ⋅ = + + + + 
 

  

 
where, for example,   
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 3 62
3 62 3 3

2,3

(.96)(.95)(.94)
.7198.

(1 ) (1.06)

pE
f

= = =
+

 

Similar calculations produce 

 

( )60:5
1 1 1 1 110,000 ,

.6698 .6841 .7198 .7800 .8704
P s P= ⋅ = + + + +

 
 

from which we find 1476.02.P =  
 
Note that we could also have found the net level annual premium prospectively by first 
converting the forward rates to current spot rates. We first note that 5 0,5 4.0%.z f= =  Then 

to calculate nz  for 5,n <  we use the relationship 
 

 5 5
,5 5(1 ) (1 ) (1 ) .n n

n n nz f z−
−+ ⋅ + = +  (15.3) 

  

The resulting spot rates, rounded to four decimal places, are shown in Table 15.12. (The 
reader should verify that they are correct.) 
 

TABLE 15.12 

n nz
1  0.094% 
2  1.071 
3  2.049 
4  3.023 
5  4.000 

 
Then prospectively we have 
 

 2 3 4
5 60 1 60 2 60 3 60 4 6060:5

10,000 (1 ).E P a P v p v p v p v p= ⋅ = + ⋅ + ⋅ + ⋅ + ⋅  

 
The left side of this equation evaluates to 
 

 5
5 60 5

(10,000)(.98)(.97)(.96)(.95)(.94)
10,000 6698.13,

(1.04)
v p⋅ = =  

 
where the five-year spot rate has been used. For the right side of the equation, each nv  is 
calculated using the corresponding spot rate .nz  From this we find 

60:5
4.53795,a =  from 

which we again find 
 

 
6698.13 1476.02.
4.53795

P = =   
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15.5   TRANSFERRING THE INTEREST RATE RISK  
 

 
The overriding theme of this text is that persons facing financial risks can be relieved of 
those risks by paying an insurer to assume them. From the insurer’s perspective, there are 
three primary risks associated with a contract of life insurance, namely those of expenses, 
mortality, and interest. 
 
The insurer charges for the expenses of doing business by increasing the net premiums to 
reach the contract premiums (or gross premiums), actually paid. If operational expenses turn 
out to be less than assumed in setting the contract premiums, the insurer makes a profit on 
the expense element. If the opposite turns out to be the case, then the insurer loses money on 
the expense element. Generally insurers are fairly good at charging for their expenses, so the 
expense risk is not very great. 
 
For many years the view was held that the major risk to the insurer was the mortality risk. If 
failures occurred earlier than, or at greater rates than, as predicted by the underlying survival 
model, the insurer suffered losses on the mortality element under life insurance contracts.  
Under annuities, the opposite would be true; the insurer would suffer a loss if mortality was 
lighter (i.e., if annuitants lived longer) than as predicted by the survival model. 
 
By assuming that the lifetimes of different policyholders are independent, the insurer can 
diversify the mortality risk over the collection of policyholders. Some will fail earlier and 
some later, so that the aggregate risk can be better predicted. In light of this, we refer to the 
mortality risk as a diversifiable risk. (This concept was illustrated in Section 9.3.)5 
 
When the insurer selects an interest rate for the premium calculation, it is assuming that it 
will be able to earn that rate on its invested assets backing the insurance or annuity contracts. 
If it earns interest on its assets at a greater rate than that assumed, it makes a profit on the 
interest element. On the other hand, the insurer faces an interest rate risk that earned rates 
will fall below assumed rates and it will therefore suffer a loss on the interest element. This 
has been a problem for many insurers in recent years. 
 
If an interest loss occurs, due to falling interest rates in the investment marketplace, it will 
occur on all contracts alike. For this reason we refer to the interest rate risk as a non-
diversifiable risk. 
 
Although the insurer cannot diversify the interest rate risk across the collection of 
policyholders, it is possible for the insurer to transfer part or all of that risk back to the 
insured. When this is done under a life insurance or annuity contract, we say that the 
policyholder is participating in the interest rate risk.6 
 
In this text we explore how this is accomplished under variable or indexed universal life 
insurance contracts. (See Sections 16.2.1 and 16.2.3.) For annuity contracts, transferring all 
or part of the interest rate risk to the annuitant occurs under variable annuity contracts. Such 
contracts are not discussed in this text. 

                                                 
5 See Appendix C for a mathematical analysis of risk diversification. 
6 Another strategy available to an insurer to reduce interest rate risk is hedging.  
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15.6  EXERCISES 
  

15.1 Actuarial Present Values Using Variable Interest Rates 
 
15-1 Complete Example 15.1 for Scenarios 2 and 3.  
 
 
15-2 Complete Example 15.2 for Scenarios 2 and 3. 
 
 
15.2 Deterministic Interest Rate Scenarios 
 
15-3 (a) Complete part (a) of Example 15.3 for the rising interest rate scenario. 

 (b) Complete part (b) of Example 15.3 for the rising interest rate scenario. 
 
 
15-4 A company sells insurance in a country where only one-year bonds are available as 

investments to back its business. Our task is to compare the interest sensitivity of the 
following three products in this environment. 

 
(i) A 5-year immediate annuity-certain, where payments are made regardless of 

survival status. 
(ii) A 5-year immediate life annuity. 
(iii) A single premium 5-year term insurance contract. 

 
The applicable failure rates are 1 2 3.10, .15, .20, .25,x x x xq q q q+ + += = = =  and 

4 .30.xq + =  
 
(a) Assuming today’s interest rate is 7%, calculate the actuarial present value for 

each of the three products using each of the following two interest rate 
scenarios: 
 
(1) Increasing: rates rise by 1% each year, but do not exceed 11% in any year. 
(2) Decreasing: rates fall by 1% each year, but do not fall below 3% in any year. 

 
(b) Which of the products is least interest sensitive in this environment? Explain. 
 
 

15-5 For the same country and interest scenarios as in Exercise 15-4, we wish to evaluate 
the following two similar products: 

(1) Single premium 10-year term insurance of face amount $1000, with benefit 
paid at the end of the year of failure. 

(2) Annual premium 10-year term insurance of face amount $1000, with benefit 
paid at the end of the year of failure. The level annual premiums are paid at 
the beginning of each year. 

(a) For both products, assume qx = .05 for all years. Calculate the benefit premium 
for each product, assuming rates remain level over the life of the product. 
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(b) Calculate the actuarial present value of the gain for each product under the 
increasing and decreasing scenarios. (Note that the premium was chosen so that 
the actuarial present value in each case is zero in the event of level rates.) 

(c) In terms of interest risk, which payment scheme appears less risky for the 
insurance company? Explain. 

 
 
15.3  Spot Interest Rates and the Term Structure of Interest Rates 
 
15-6 Verify that 1

60:5
.1527A =  in Example 15.5. 

 
15-7 Use the nominal annual coupon yields in the table below to calculate the correspond-

ing zero-coupon yields of the same maturities. (In both cases the nominal annual 
yield rates are convertible semiannually.) 
 

Maturity 
(in years) 

Nominal Annual Yield for
Coupon-bearing Bonds  

Nominal Annual  Yield for 
Zero-coupon Bonds 

0.5  2.0%  
1.0  4.0  
1.5  6.0  
2.0  8.0  

 
 
15-8 Use the annual coupon yields in the table below to calculate the corresponding zero-

coupon yields of the same maturities. (For this exercise, we assume annual-payment 
coupon bonds rather than semiannual-payment coupon bonds.) How does the 
solution compare to that of Exercise 15-7? 

 
Maturity 
(in years) 

Annual Yield for 
Coupon-bearing Bonds 

Annual Yield for 
Zero-coupon Bonds 

1  2.0%  
2  4.0  
3  6.0  
4  8.0  

 
 

15-9 Use the annual zero-coupon yields in the table below to calculate the corresponding 
yields for annual-payment coupon bonds of the same maturities. (We assume here 
that coupon bonds pay coupons annually rather than semiannually.) 

Maturity 
(in years) 

Annual Yield for 
Coupon-bearing Bonds 

Annual Yield for 
Zero-coupon Bonds 

1   2.0% 
2   4.0 
3   6.0 
4   8.0 
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15-10  Assume the following zero-coupon rates and calculate the implied yields for coupon 
bonds with equivalent maturities. (In both cases the nominal annual yield rates are 
convertible semiannually.) 

Maturity 
(in years) 

Nominal Annual Yield for
Coupon-bearing Bonds  

Nominal Annual  Yield for 
Zero-coupon Bonds 

0.5   2.0% 
1.0   4.0 
1.5   6.0 
2.0   8.0 

 
15-11 The regents of Fantastic University provide a four-year scholarship for one incoming 

freshman who plans to major in actuarial science. Current tuition at Fantastic is 
$26,000 per year and tuition is expected to increase 8% per year over the next four 
years. The first annual tuition payment is due today. Each year we assume a 25% 
chance that the scholarship recipient will change majors or drop out of school; either 
event cancels future scholarship payments. Using the table of yields from Exercise 
15-9, calculate the actuarial present value of this scholarship. 

 

15.4  Forward Interest Rates 
 
15-12 Complete Example 15.6 by verifying the ,n kf  values shown in Table 15.10. 

15-13 Verify the spot rate values shown in Table 15.12. 

15-14 Using the n-year forward one-year rates in the following table, find all determinable 
spot rates. 

n ,1nf  

0  4.0%
1  5.0 
2  6.0 
3  7.0 
4  8.0 

 
 
15-15 Using the n-year forward one-year rates from Exercise 15-14, find all available 

forward rates. 
 
 
15-16 In connection with taking over a client’s retirement account, the client agrees to 

invest $300,000 of that account with your firm for three years, starting two years 
from now.  

 
 (a) According to the interest rates in Exercise 15-15, what rate of interest can be 

locked in for the investment period? 
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 (b) What spot-rate transactions should be entered into today in order to lock in the 
yield found in part (a)? Include the term and principal amount of the two 
transactions. 

 
 
15-17 Due to the demise of a distant relative, you will receive $25,000 in one year that you 

would like to invest at that time for two years.  
 
 (a) According to the rates in Exercise 15-15, what rate can be locked in for the 

investment period? 
 
 (b) What transactions should be entered into today in order to lock in the rate from 

part (a)? Include the terms and principal amounts of the two transactions. 
 
 
15-18 Calculate all forward rates that can be inferred from the annual coupon-bearing bond 

yield rates in the following table.  
 

Maturity 
(in years)

Annual Yield Rates for
Coupon-bearing Bonds 

1  2.0% 
2  4.0 
3  6.0 
4  8.0 

 
 
15.5  Transferring the Interest Rate Risk 
 
15-19 Give examples of mortality risk that is not diversifiable.  
 
 
15-20 Explain the differences in interest rate risk for whole life insurance versus term life 

insurance. 
 
 
15-21 Why is interest rate risk considered a non-diversifiable risk? Give an example of the 

effects of interest rate risk. 
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 (b) ( )
64

( ) (12)1/2 51 ( )
51 1/2 51 51 1/2

61

1
21 .03 65 ,ER y r r

y y y y
y

APV y PAB v p q aτ+ −
+ − +

=

 = − − − ⋅ ⋅ ⋅ ⋅ ⋅    

   
  where   

             ( ) ( )3 2 1

51

1 1
2 2

1/2
1
2

1.01 51 (100,000)
3

y y y yS S S S
y SPAB y − − −+ + +

+ = + − ⋅  

 (c) 
60

( ) (12)14 ( )
51 1/2 51 65 1/2 1/251 65

56

wW w r
y y y y y

y
APV PAB v p q p aτ

+ − − − +
=

= ⋅ ⋅ ⋅ ⋅   

 (d) 
64

( ) (12)1/2 51 ( )
51 1/2 51 51 1/2

56

I y i i
y y y y

y
APV PAB v p q aτ+ −

+ − +
=

= ⋅ ⋅ ⋅ ⋅   

 (e) ( )
64

51
61

( ) (12)1/2 51 ( )
1/2 51 51 1/2 3

1
2.50 1 .03 65D

y
y d r

y y y y

APV y

PAB v p q aτ
=

+ −
+ − + −

 = − − − 

⋅ ⋅ ⋅ ⋅ ⋅




 

 
14-27 (a) 1860 
 
 (b) The APV for each benefit is calculated the same as in Exercise 14-25, except that 

65PAB  in part (a) and 1/2yPAB +  in parts (b)-(e) are all replaced by the benefit ac-

crual 1860. The unit credit normal cost is the sum of these five APVs. 
 
 (c) The APV for each benefit is calculated the same as in part (b), except that the 

1860 benefit accrual is replaced by the 7500 accrued benefit. The accrued liabil-
ity is the sum of these five APVs. 

 
14-29 (a) 4362.80−           (b)  28.25  
 
 
CHAPTER 15 
 
15-1 577.93;   635.97 
 
15-2 .1875;    .1958 
 
15-3 (a) 3.8461 

 (b) .6155 

 
15-4      (a) Interest Rate 

Scenario 
Annuity
Certain 

Life 
Annuity

Term 
Insurance

 Increasing 3.97 2.53 .53 
 Decreasing 4.25 2.65 .57 

 (b) The life annuity 
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15-5 (a) 289.84;   46.73 

 (b) Increasing:    23.74;    6.10 
  Decreasing: 29.25;−   7.96−  

 (c) The annual premium product 
 
15-7 2.0%;  4.020%;  6.082%;  8.211% 
 
15-8 2.0%;  4.041%;  6.169%;  8.447% 
 
15-9 2.0%;  3.960%;  5.844%;  7.615% 
 
15-10 2.0%;  3.980%;  5.921%;  7.804% 
 
15-11 74,020 
  

 15-14 n 1 2 3 4 5 
 nz  4.000% 4.499% 4.997% 5.494% 5.991% 
 

 15-15 n ,1nf  ,2nf  ,3nf  ,4nf  ,5nf  

 0  4.00%  4.499%  4.997%  5.494% 5.991% 
 1  5.00  5.499  5.997  6.494 -- 
 2  6.00  6.499  6.997 -- -- 
 3  7.00  7.499 -- -- -- 
 4  8.00 -- -- -- -- 
 
15-16 (a) 6.997% 
 
 (b) Sell a 2-year zero-coupon bond and buy a 5-year zero-coupon bond, each of face 

amount 274,724.24. 
 
15-17 (a) 5.499% 
 
 (b) Sell a 1-year zero-coupon bond and buy a 3-year zero-coupon bond, each of face 

amount 24,038.46. 
 

 15-18 n ,1nf  ,2nf  ,3nf  

 1  6.12%  8.32% 10.685%
 2 10.56  13.04 -- 
 3 15.58 -- -- 
 
15-19, 15-20, 15-21   (See Solutions Manual.) 
 
CHAPTER 16 
 
16-1 2,489.89;    2,479.75;    2,469.59 
 




