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INTRODUCTORY COMMENTS

This study guide is designed to review mathematical topics, particularly algebra and
calculus, that are needed as background and are "prerequisite” topics for the sequence of
Society of Actuaries and Casualty Actuarial Society professional examinations. Until
2004 the professional exams tested material on these topics. This study guide has been
adapted from the an exam preparation manual for the algebra and calculus topics as it
was covered on professional examsin the past.

Most of the examplesin the notes and many of the problems in the problem sets are taken
from old Society examinations. The first five comprehensive tests are taken from
professional exams that were held between 2000 and 2004.

If you have any comments, criticisms or compliments regarding this study guide, please
contact the publisher, ACTEX, or you may contact me directly at the address below. |
apologize in advance for any errors, typographical or otherwise, that you might find, and
it would be greatly appreciated if you bring them to my attention. Any errorsthat are
found will be posted in an erratafile at the ACTEX website, www.actexmadriver.com .

It ismy sincere hope that you find this study guide helpful and useful in reviewing
algebraand calculus.

Samuel A. Broverman January, 2005
Department of Statistics

University of Toronto

100 St. George Street

Toronto, Ontario

CANADA M5S3G3 E-mail: sam@utstat.toronto.edu or
2brove@rogers.com
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SECTION 6 - DIFFERENTIATION

Geometric interpretation of derivative: Thederivative of the function f(x) at the
point x = z isthedope of thelinetangent to thegraph of y = f(z) at the point
(zo, f(xo)). Thederivativeof f(x) a x = xyisdenoted f'(xo) or %

=X

Thisisalso referred to asthe derivative of f with respect to = at the point = = x,.
The algebraic definition of f'(xg) is

F'(mo) = Jim LEt)=S @) _ iy S-S (z0)

T—x0 Tr—xo

As can be seen from the graphs below, w isthe slope of the linejoining the

two points (zo, f(zo)) and (xg + h, f(zo + h)) . Ash approachesO, theline
approaches the tangent line to the graph.

15 f{xg+h)
tangent line
14
13
12
fi{xg)

1 2 3
*g xpth
-1

Thederivative asarate of change: Perhaps the most important interpretation of the
derivative f'(z() isasthe" instantaneous' rate at which the function isincreasing or
decreasing asz increases (if f' > 0, thegraph of y = f(x) isrising, with the
tangent lineto the graph having positive slope, and if f/ < 0, the graph of

y = f(z) isfalling), andif f'(z;) =0 thenthetangent line at that point is horizontal
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(has slope 0). Thisinterpretation is the one most commonly used when analyzing
physical, economic or financial processes.

Existence of f'(zo): Wesay that f/(x() exists (or we say that f isdifferentiable at )

if the limit 1im £&eth) =/ (x0)

lim 7 existsand isfinite. When f’(z() exists, the graph will be

"smooth" (no sharp corner) at the point (z, f(zy)). Notethat if f isdifferentiable at
o, then f must be continuousat xg .

It is possible to define one-sided derivatives from the right and from the | eft:

derivative from theright - f/ (zq) = lim A=) — jim o=/
derivative fromtheleft - f (x¢) = lim M lim L=/ (0)
h—0— T—Ty T—o

In order for f'(x) to exist, it must be true that f is continuous at x, and also that
fi(xo) = f'(xp) and arefinite (the derivatives from the right and left must be equal).

Higher order derivatives: The second derivative of f at =, isthe derivative of f'(x) at

the point z. Itisdenoted f”(xq) or f& () or % . Then-th order derivative of
f at 2, (n repeated applications of differentiation) is denoted ™ (z() = %{f

Example 6-1: (i) Forthefunction f(z) = 2%, thederivativeat =z = 2 is
—8

, . f@+h)—f(2) (2+h)3-8 o 12h+6R%2+R® N _
(2 )_}Ilm—h _}Ilm A iILILTg)—h _Lm(12+6h+h)_12.

In asimilar way, for any z, it can be shown that if f(z) = 3, then f'(z) = 322
Then, the second derivativeat = = 2 is

/ ol 2
£1(2) = ”mw _ im 3@ty -12 Iim%ﬁ”ﬂ = lim(12 + 3h) = 12.
h—0 h—0 h—0 h—0

There are a number of rules for finding the derivatives of commonly used functions -
these are summarized alittle later in these notes.
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Example 6-1 continued

(i) Forthefunction f(x)=|z|, if x >0 then f'(x) =1 andif x <0 then

f'(z) = — 1. At = = 0, thederivative fromtherightis £} (0) = 1, and from the left it
is f2(0) = — 1. Itfollowsthat the f'(0) does not exist since the right and left hand
derivativesare not equal at x = 0. Note that in the graph below, the sharp corner in the
graph at the point x = 0 corresponds to the derivative not existing at that point.

. 1-a? for <0 . :
(i) Thefunction f(x) = { isdifferentiable at all points except « = 0.

x? for x>0
f(x) isnot continuousat = = 0 since JLT, flx)=1+#0 :.Z‘Ii_)r(r;+ f(x) , and therefore,
f cannot be differentiableat = = 0 (however, for x > 0, f'(z) =2z andfor = < 0,
f'(x) = —2x,and as -0, f'(x)—-0 from both the right and the | &ft).
(iv) Thefunction f(z) = % isdifferentiablewith f/'(z) = — % at all points except
x =0. Notethat f'(z)— — oo as x—0 from both the left and the right.

13
g=ixi
12
iz 1
3 -2 -1 ; S
-1
- .. -_2
(i) (if)
12
y = 1 % 11
-1 1z
-1
-2
{-2
(iii) (iv) i
Notethat in (i), for > 0, f’(x) =1 andthe graphisastraight line with slope 1, and
aso, for x <0, f'(zr) = — 1 andthe graph isastraight line with slope — 1. In
general, if afunction has a constant derivative (over someinterval), the graph of
that function will be a straight line (over that interval). O
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Equation of tangent lineto thegraph of y = f(x) at thepoint zq:
y=I@) _ p(40) (point-slope form) .

T—X(

Example 6-1(i) (continued): Atthepoint = = 2, thefirst derivativeof f(z) = 2* was
foundtobe f’(2) = 12. Thiswill be the slope of the tangent line at the point (2,8) on
the graph. The equation of the tangent line at that point will be “— = 12, which can
bewrittenintheform y = 12z — 16 . The graph of thistangent lineis plotted in the

diagramabove. [

Rules of differentiation: f(x) f(z)
¢ (aconstant) 0
Power rule - cx" (n € R) cnz" !
g(x) + h(z) g'(x) + h'(z)
Product rule - g(x)-h(xz) ¢'(z) h(z)+g(z)-h'(z)
u(z)v(z)w(x) wow 4+ uwv'w + vow’
Quotient rule - % h(x)g,(ﬁl)(;igx)h/(x)
Chainrule- g(h(z)) g (h(z))-h'(x)

Note that in applying the chain rule, we can think of / asavariable in the function g(h),
and the derivativeis ¢'(h) . Forinstance, if g(z) = 3z® and h(z) = sinx , then

d(z) =92° s0

that ¢'(h) = 9h? ,and ¢ (h(x)) = 9(h(z))? . Then, according to the chain rule, the
derivative of g(h(x)) (with respectto x) is ¢'(h(z)) - h'(z) = 9(h(z))? - h'(x) = 9(sin

7)? - (cosz) .
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Another notation that is sometimes used to expressthe chainruleis

g0 - ol dg) R _ G dh g () (@) = o (h(@)) - W (@)

Additional examples of the chain rule are given below.

Differentiation of Trigonometric and Exponential Functions
The differentiation rules above and the derivativesin the following list are essential
for the Course 1 examination.

f(z) f'(x)
a® (a > 0) a®lna
e’ e’
Inx %

1
logbx zlnb
sinx cosx
cosx — sitnx
secx (secx)(tan )
tanx sec’r

1
Arctan x a2
Arcsinx 1

1—22

In addition, from the chain rule we get the following derivatives:

e9(@) g (z)- e’
In(g()) rer
sin(g(z)) cosl(g(iU)) -g'(2)
Arctan(g()) o

The chain rule applied to the natural log function % In(g(x)) = %

important applicationsin a particular situation in which we are told that the rate of
change of afunction (which means the derivative) is proportional to the function itself.
Functions that satisfy this property are of theform g(x) = Be® , whereit can seen that
g (z) = cBe®. Thiswill be addressed in detail later in these notes.
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Example6-2: If f(z) = ze®, thenthen-th derivative, " (z) = ?
Solution: f(x) = xe” . Applying the product rule resultsin

flx)=ax- % e:”—i-(% x) e’ =xet +e’ = (x+1)e”

fA(z) = (x4 1)e” +1-e* = (x4 2)e” . Continuing in thisway (or using
mathematical induction) resultsin £ (z) = (z 4+ n)e” . O

Example 6-3: What isthe derivative of f(z) = 4x(2? + 1)3?

Solution: We apply the product rule and chainrule: f(z) = g(x) - h(x),
where g(x) =4z , h(z) = (2> +1)?, ¢'(z) =4, h'(x) = 3(2*> +1)%- 2z
fl(z) =4z 32> +1)? -2z + 4(2®> + 1)3 = 4(2? + 1)*(T2* + 1) .
Noticethat h(z) = (z? + 1) = [w(z)]® = h(w(z)) , where h(w) = w* and
w(z) = z* + 1. Thechain ruletells usthat

h'(z) = h'(w) - w'(z) = 3w? - (2z) = 3(z*+ 1)*- (2z) . O

In applying the chain rule to the function h(w(z)) theresulting derivativeis
dd—$ h(w(z)) = h'(w(z)) - w'(x) . Thiscan aso bewritten in the differential notation
% h(w(x)) = dh . dw  \yhere h can be regarded as a function of w with derivative

— dw  dr
dh .
dw
In Example 6-3 we have h(w) = w® sothat % =3w?,and w(z) = 2> + 1, sothat
d d d
g =2x. Then = (2*4+1)* = 4~
h(w(z)) = 2. 98 — 342 (20) = 3(a® + 1)2 - (22) .

Example 6-4: Use the power rule, chain rule and product rule to derive the quotient rule.

Solution: Supposethat f(x) = % . Then f(x) can be written in the form
f(z) = g(x) - [h(z)]", and applying the product rule resultsin
f'(@) = ¢(@)- h@) " +gl@) g [h@)] .
Applying the chain rule and power ruleto [h(x)] ! we get
ix @) = = [h(@)] 2 M(2).
Then f'(z) = ¢'(z) - [h(2)] " +g(z) - (= [h(2)] 7 1/ ()
= (2) - h(2) - @)+ g(x) - (— [h(@)] 2 () = 2L 0
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Example 6-5: A cube of ice melts, without changing shape, at the uniform rate of 4
cm?/min. Find the rate of change of the surface area of the cube, in cm?/min, when the
volume of the cubeis 125.

Solution: If the volume of the cubeis V' then the length of asideis V''/3 and the surface
areais 6V2/3 (6 faces on the cube). Given that % = — 4 (sincetheicecubeis
melting, volume of the cube is decreasing and the rate of change, or derivative, of the
volume, with respect to time, is negative), we have d6y2/3 = 6. 2 LVs. ‘fj—‘t/ .
When the volumeis V = 125, the rate of change of the surface areais

6-2-(125)3 (4= -1, O

Implicit differentiation: A relationship between = and y may be given that isnot in
functional form, in other words, there may not be an explicit representation of y in terms
of x. For example, intherelationship > + ziny + 2* —4 =0, itisnot possible to
solve for y directly asafunction of . Making the "implicit" assumption that iy isa
function of z (say y(x)), it is till possible to obtain the derivative of y with respect to z.
Thisis done by using the various rules of differentiation that were mentioned earlier; the
notation 1/ refersto the derivative of y with respect to z. In the example mentioned,
differentiating the expression resultsin  2yy’ + lny + x - % +322=0.

. ' . P 3z +iny
Solving fory' resultsin 1/ = .
The point (0, 2) lies on the curve, and the derivative of y with respect to x at that point
is dy _ _ 0+n2 _ _ In2
y = dx 4+g o 4

Given arelationship between y and z, it is possible to assume that an "implicit inverse"
function exists, even if it is not possible to solve for x in terms of y explicitly.

Assuming that « isafunction of y (say x(y)) and differentiating the expression with
respect to y, we can solve for the derivative of the inverse function; thisisdoneina
mechanical fashion by reversing the roles of 2 and y symbolically. Applying thisto the
example just considered we get

d%[gf +zlny+ 23 -8 =0- 2y+ + (dy) Iny + 3z%( y)] =0, and solving for

d d 2y+—
d”” resultsin d—g = — 3=y - Atthepomt (0,2) (z = 0,y = 2) thevalue of 4& |s
4
T in2
Note that = / - . Thiswill always be the case for the derivative of an inverse
function.
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Example 6-6: Find the slope of the line tangent to the curve ¢ — 2%y +6 = 0
at the point (1, — 2).
Solution: Applying implicit differentiation resultsin
4

3%y —2xy — 2%y =0y = %.Atthepoint(l, —2)wehave y' = — 7.0

Example 6-7: Given y = f(z) = 2* + 2°, let g bethe inverse function of f (so that
z = g(y)). Findg'(2).

Solution: For inversefunctions y = f(z) and = = g(y), we have

9(f(x)) =9g(y) =z andaso f(g(y)) = f(z) =y. Oncewenoticethat f(1) =2, it
followsthat ¢g(2) =1.

Also for theinverse functions f(z) and g(y) we have ¢'(y) = Z—; = W f/(lx) :

Therefore, ¢'(2) = #1) . Since f'(z) = 32* + 5z*,and f'(1) = 8, we have

J(2) = % (note that we can find ¢'(2) even though we do not have an explicit

representation for = = g(y)). Supposethat wewishtofind ¢(3). Then ¢'(3) = %

,where 3 = f(c) = ¢3 + ¢ . Therefore, in order to find ¢/(3) using the inverse
function rule for differentiation, we must know the x-value (called ¢ here) so that
3=f(e). O

Related Rates and Differentiation of Parametrically Defined Relationships:
Situations can arise in which two or more factors are functions of the same variable, say
t (often t denotes time), such aswhen x(t¢) and y(¢) are parametric functions. When x
and y are defined in thisway, it is possible to express the rate of change of y with

respect to x as
dy  dy/dt

dr = dx/dt

Note that this can be written as g—z = % . j—; , SO that there is an implicit assumption

that y isafunction of ¢, and ¢ isafunction of = (the inverse function of z(t)).

If z(t) and y(t) are the horizontal and vertical positions of apoint at time ¢ then

the velocity vector has horizontal component ‘é—f and vertical component % . The

length of the vector is (‘é—f)? + (%)2 :
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Example 6-8: Suppose that x isthe length of one of the equal sides of an isosceles
triangle, and suppose that 6 is the angle between the equal sides. If xisincreasing at the

rate of 1—12 m/hr., and § isincreasing at the rate of 155 radians/hr., then at what rate, in

m?/hr., isthe area of the triangleincreasingwhen = = 12mand 6 = 7 ?

Solution: Area= A = (x cos g)(:c smg) = %2 - sin 6 (thisfollows from the identity

sin(a 4 b) = (sina)(cos b) + (cosa)(sind) , sothat sin(c) = 2(sin 5)(cos 5) ).
From the context of the situation, we have that = and 6 are both functions of ¢,
with 4 = L and % = -~ . Applying the product rule and the chain rule to

dt — 12 180
2
differentiate A resultsin % = (zsinb) - ‘Zl—f + (5 - cosf) - %. When z =12 and
dA . 1 122 2 2
Hzg,wehave E:(Hsm%) -ﬁ-l—(T-cos%)-% :%4—%.
x g g
2 2
O
f(x)

L'Hospital'srulesfor calculating limits. A limit of the form Iimm issaidto bein

xr—cC
indeterminate form if both the numerator and denominator go to O, or if both the
numerator and denominator goto + oo. L'Hospital'srules are:

(i) limf(x) = limg(z) = 0, and
1 'F{(ii) f/(c) exigts, and THEN lim 75 = 2

(iii) ¢'(c) existsandis # 0

() limf(x) = limg(x) = 0, and

2 g { (i) fand g aredifferentiable near ¢, and THEN Iim% :“mf/'((ff;
(o z—c 9\ T z—c 9\ T
(if) lim 52} exists

In 1 or 2, the conditions limf(xz) =0 and limg(z) = 0 can be replaced by the
conditions limf(z) = + oo and limg(x) = 4 oo, and the point ¢ can be replaced by

+ oo with the conclusions remaining valid.
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In calculating limits, it is sometimes useful to use the "natural log transfor mation™;
instead of finding limf(x) = L directly, wefind limin f(x) = b, andthen L = e .

Thistechnique is useful if the limit is of the form "1>" or "oc®" or "0°" ; this method
will often involve L'Hospital'sruleto find lim In f(x) .

-3
3759'

Example 6-9: Find I|m

Solution: The Iimits in both the numerator and denominator are 0, so we can apply
I'Hospital'srule. d 3v — 37 n3 , and d 302 = 30/2 1ln3, so that

im32=3  jim2l2 3 _ 1 Notethat this! Id also have been found b
7_rg?)x 5 —,I;'_,@W—é' ote that this limit could also have been found by
factoring the denominator into 3 — 9 = (3%/2 — 3)(3%/2 + 3) , and then canceling out
the factor 3%/2 — 3 in the numerator and denominator. O

Example 6-10: Find lim /(1 + 5-)"

n—oo

Solution: Using the substitution y = %,thelimitbecom%

n—oo n—oo y—

Note that thislimit is of the form "1°" .
We use the natural log transformation, Iim In[(1+y)V¥ =InL.

1+y)

Now, Ilmln[(l + )W) = I|m = ln(l +y) = I|m i , and applying

I'Hospital's rule resultsin Imr(; (iy y) =lim 0 /(Ty) = i =inL. Then, L =¢"*. O
Yy— Yy—

Example6-11: If o > 1,find lim %% l"“

T—00

Solution: As xz—oo both numerator and denominator approach co. Applying

a;{fl =2 =0 (sncea>1, a—1>0).

I'Hospital's rule resultsin Ilml””” I|m

T—00
O
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Differentiation of functions of several variables - partial differentiation:

Given the function f(x,y), afunction of two variables, the partial derivative of f with
respect to z at the point (¢, y) isfound by differentiating f with respect to x and
regarding the variable y as constant - then substitute in the values = = zy and y = .
There are various ways in which this partial derivative may be denoted:

2 fenw) s e L

(w0,y0)

— lim f(@.y0)— f($07y0)

T—x) LT—=To
T=T0,Y=Yo

The partial derivative with respect to y is defined in asimilar way:

— lim [ (xo,y)—f(%0,y0) .
—Yo

UYy—
T=Z0,Y=Yo v

0 )
8_f = fy(mO?yO) — fQ(LUO,yo) — 8—5
(1'07110)

Partial differentiation can be extended to a function of more than two variables.

i " - — - f of v 0*f Af \ .

Higher order” partial derivatives can be defined - -3 = ax( 75) W= ay( 5‘y) ;

and "mixed partial" derivatives can be defined (the order of partial differentiation does
d d 9?

not usually matter) - gy = (%( Bi ) = ay( 0£ ) = 3y gx :

The chain rule can be applled to afunction of two or more variables. Suppose that
u(zx,y) and v(zx, y) are both functions of the variables x and y, and suppose that F'(u, v)
isafunction of v and v. Then F'(u(x,y),v(x,y)) isafunction of x and y, and

oF OF Ou OF Ov oF OF Ou OF Ov

dr — Ou 6w+3'v ox and by — Ou 8y+6v oy

, d 9
Example6-12: If f(x,y) = ¥ for xz,y > 0 thenfind a—£ " l)and a—yéc W
2 2
Solution: 2—5 = ya¥~! =(3)4)"? =1, and
“43)
g—; =2Y (Inz) and 8—f = a¥ (Inx)? =42 (In4)> = 2 (In4)?. a
(4.3)
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Example 6-13: F(u,v) = u+v*, u(z,y) = xy , v(z,y) =z —y* . Find 4 |
ion: 2F — 1 9F _ ou _ , Ov _

Solution: Em =1, 50 = 20, 5 = Us 3y =1.

O 1yt 1=y+r2w=y+20z -4

Altematively, F(u,v) = F(zy,z —y*) =2y + (z —¢*)* » L =y +2(—¢?). O

If F(x,y,z) isafunction of three variables then therelationship F(z,y,z) = 0 defines
a3-dimensional surface. If (xq,yo, z0) iSapoint in the surface, then the equation of the

tangent plane to the surface at that point is

OF oF oF
(z —x0) 5, + (W —w)g, +(z2—-20)%,; =0,

where the partial derivatives are evaluated at the point (xo, o, 20) . It ispossible that a
3-dimensional surfaceis presented intheform z = f(z,y) . Thiscan bewrittenin the
form f(z,y) — 2 =0, sothat F(x,y,z) = f(z,y) — z , and then the tangent plane
method just described can be applied.

Example 6-14: Find the equation of the tangent line to the surface z = 2% + 4°
at the point (z¢, yo, 20) = (1, 1,2) .

Solution: The surface can be writtenintheform F(z,y,2) =2 +y*—2=0.
Then % F =2z, 8% F =2y, % F = — 1. Theequation of the tangent planeis
(x—1)2)+ (y—1)(2)+ (2 —2)(—1) =0, orequivaently, z =2z + 2y — 2 .
The following graphs give two 3-dimensional views of the tangent plane.

*..
GO0
SEAEHIOAN
i

e

Lo

Wk

RN 7
NNyl ot
2 t‘&%ﬁ

2 (%1042 (y-1)-(2z-2)=0
e I
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r-1)-[z-2)=0

-5
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PROBLEM SET 6
Integration (Notes Section 8)

1. The graph of the differentiable function f is shown below:
y

1\/1\/ 2

Which of the following hasthe largest value?
A) [ f(x)de  B) [ f(x)dx  C) [F(f(x))/2dz D) [ f(z)dz E) [ (f(z))’dz

2. Thegraph of f/(x) isgiven below. The numbersindicate the area of the region.

£7 ()

\ 4 u-

For how many distinct and strictly positive z-valuesisit truethat f(z) = f(0)?
A) 0 B) 1 C) 2 D) 3 E) 4

3. Anadvertiser claims that based on its proposed advertising campaign, the rate at
which sales will occur at time ¢ (days) into the campaignis 10, 000te ™! (¢ isregarded as
a continuous variable). According to the advertiser's claim, determine the amount of
sales that will occur during the second day of the campaign (nearest 100).

A) 3100 B) 3300 C) 3500 D) 3700 E) 3900
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4. A model for world popul ation assumes a population of 6 billion at reference time O,
with population increasing to alimiting population of 30 billion. The model assumes that
the rate of population growth at time ¢ > 0 is ﬁ , Where t isregarded as a
continuous variable. According to thismodel, at what time will the population reach 10
billion (nearest .1)?

A) 3 B) 4 C) 5 D) .6 E) .6

5. A paint machineis set to spray randomly within asquare area 1 unit by 1 unitin
dimension. The rate at which the painted areaincreasesis proportional to the area not yet
painted. When the sprayer starts, 50% of the area has already been painted, and after 1
unit of time, 75% of the area has been painted. In how many more units of time (after
time 1) will 99% of the area be painted (nearest .01 units of time)?

A) 5.00 B) 5.32 C) 564 D) 5.96 E) 6.28

6. Two particles start from the originat ¢ = 0 and move along the z-axis. One moves
with velocity wo(t) = 2t + 8, and the other moves with velocity w(t) = 6t + 2.
Calculate how far from the origin the particles are when they meet again.

A)3 B)l1l C 14 D)2 E) 33

: 1 rx+h 1
h—0 hfI u+y/u+1

A V1422 —=x B) x—;\/ﬁ—ﬂ Co D) oo E) cos0

8. Let R(t) bethe area of the region bounded by the y-axis, a positive continuous

function f(x), anegative continuous function g(z), and theline x = ¢, where ¢ > 0.

Which of the following must be equal to % ?

A) [jlf(@) = g(@)]dz  B) [jIf(x)+g(x)dz  C) f'(t)—d)
D) f(t) —g(t)  B) f(t) +4(t)
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9.1f [‘f(z)dz=6, f:f(x)dx:?), fbdg(:v)dx: -3, fjg(ac)da:z?,
then ['[3f(z) — 4g(z)]dz =
A) —31 B) —19 C) 11 D)30 E) 49

10. Find &, %\ fudu for &> 0.

11, Let F(z) = [7"V1+tdt. F'(0) =
)

A) 0 B % C) % D) 1 E) Doesnot exist

12. Let f(x) = 2. For what value of x does f(x) equal the average of f on [2,5]?

A /BT B V1B O/ D/ BT

™

13. Find the sope of the tangent line to the graph of y = fO“TZu (sinu)Pduatz = /5

2
n3/?

A) 5 B) 5z O x D)=** FE) 27

3

A)2 B)Z C) 2 D)

~|©

E)

w|oo

15. Which isan antiderivative of x cosxz ?

A) xsinz — cosxz B) wsinx + cosx C) zsinx D) ‘C?C% E) xzs%
16. Let f, g, h and k be differentiable functions. For all real o, f(x) = [\ k(1) dt

Then f'(z) =
A) K'(z) B) k(x) C) k(h(x))
D) k(h(x)) — k(g(x)) E) E(h(x)h (x) — k(9(z))g'(z)
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17. Let [x] be the greatest integer less than or equal to z. What is f02 [t?] dt ?

A)5—3-v2 B2 C©°F D) 1++2+ /3

E) Theintegral isnot defined

18. Find the area enclosed by the graphsof y = ﬁ and |z| =1.
A) B) 5 C 1 D) 0 E) ]

19. If F(z) = [yzf(t)dt,thenwhatis zF'(z)?
A) *f(z)+ F(z)  B) f(z)+ F() C) zf(z) + F(x)
D) zF(z) + f(x) E) zF(x)+zf(x)

20. Calculate the area of the closed region in the xy-plane bounded by the graphs of
y=cosx, y=cos2x and x = m, asshown in the shaded portion of the diagram.
L

1
cos{2x)

bal

1=

walba

cos{x}

A)1—§ B) V3 C) V3+1 D)%g E) 33

21. Calculate the area of the closed region in the zy-plane bounded by vy = x — 5
and 4> =22+5.

74 98 122 128
A) 8 B) 5 C) 5 D) =5° E) 5°
22. What isthe area of the closed region bounded by y = 2% — |z| and the z-axis,
between z = — 1 and =z = 1?

A& B i 0

6 D)

wno

E)

Wl
[ex[é]
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PROBLEM SET 6 SOLUTIONS

1. Notethat 0 < f(z)
0<[f(@)] < fla) <
Then, fo x)dr < fo
Also, fo f(x)dz = f(2

<1 foral = between0and 1. Thus,

f(z)'/? forzin [0 2] .

f(z)dzr and fo 7))?dz < fo x)dr < fo x)2dx
) — ()—1—1:0§f0f 1/2da:. Answer: C

£ ()

2= [ f'(z)dz = f(a) - f(0), sothat f(a) = f(0)+2.

Since f'(x) >0 for 0 <z < a, f(x) isstrictly increasing from 0 to a, and we see
that f(x) increasesby 2 asz goesfrom0 to a.

Thenfromatob, f'(x) < 0, and the area factor of 3tellsusthat f(z) decreasesby 3 as
x goesfroma to b (thisistruesince — 3 = f fl(z)dx = f(b) — f(a) =

f() = f(a) = 3).

Therefore, f(b) = f(a) —3 = f(0) +2—-3 = f(0) — 1. Thismeans

that f(z) decreasesfrom f(0) 4+ 2 to f(0) — 1, and must be equal to f(0) for some =
between a and b (thisistrue because f () isadifferentiable function, which implies that
f(x) isacontinuous function).

The areafactor of 4 between b and ¢ indicated that f () increases by 4 as x goes from b
to c. Therefore, f(c) = f(b) +4 = f(0) + 3. Since f(z) increasesfrom f(0) — 1 to
f(0) + 3 asx goesfromb to ¢, there must be some = between b and ¢ for which

f(z) = f(0).

The negative areafactor of — oo totheright of ¢, indicatesthat f(x) decreases without
bound as = increases from c. Therefore, since f(z) = f(0) + 3, asx increases above c,
f(x) decreasesto — oo (as x—o0), and therefore there must be an x > ¢ for which

f(z) = f(0) . There are 3 other values of = > 0 for which f(0) = f(z) . Answer: D
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3. If F(t) denotesthetotal salestotimet, then F'(t) istherate at which salesare
occurring at time t. Therefore, F'(t) = 10,000te~" . The second day runsfrom ¢ = 1
to t = 2, sothat

F(2) — F(1) = [}F'(t)dt = [?10,000te " dt = 10,000( — te™" — ") .
=10,000( —2e 2 —e?4+et+e')=3,2975. Answer: B

t=2

4. We define F'(t) to be the population at time¢. Then F(0) =6, tlimF(t) =30,

t
and F/(t) = (.0211?1—2-675) . Then

F(S)—F(O):f dt_fOOQA——i—et)th

A PP A A
02A+e |,y 02441 ~ 024A+e

A A
sothat F(s) =6+ g5a77 — modre -

Then limF(s) =6+ 4 =30 » 77 = 24 » A =46.15.
Therefore, F'(s) =30 — ‘94263;fes . Inorder tohave F(t) =10, wehave
30 — gortts =10 - 5 = 325 Answer: A

5. Let A(t) bethe proportion of the area painted at time ¢. We are given than

A(0)=.5 and A(1) =.75. Weareasogiventhat A’(t) = K[1 — A(t)], sincethe
rate at which the areais being painted is A’(¢) and the areanot yet painted as of time ¢ is
1 — A(t) . Therefore, % [1—A(t)])= —A'(t) = — K[1 — A(¢)] , sothat the rate of
changeof 1 — A(t) isproportional to 1 — A(t) . Such afunction must be of the form
Bc' ,where B> 0 and ¢ > 0. Therefore, 1 — A(t) = Bc!

-+ 5=1-A40)=B=B-B=.5,and

25=1—-A(1)=Bc=.5c>c=.5 - Alt)=1-(.5)(.5) =1—(.5)"*!.

Thet for which A(t) = .99 must satisfy the equation

_ 1 1 _ _ [n.01 .
99=1-—(.5)" > (5)" =.01- s — 1 =564, Answer: C

6. The position of the first particle at timet is
= [Jv(s)ds = [;(2s+8)ds = t> + 8t, and the position of the second particle is
= [iw(s)ds = [} (6s+2)ds = 3t + 2t. The particles meet when

d ( ) = dy(t) —»t2+8t:3t2+2t—>t:0,3 — di(3) = dy(3) = 33. Answer: B
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. z+h flx+h)—f(x) 4 . 1
lILI—r>r(]) h‘f U+ u2—|— du = lILI—r>r(]J h - f (:U) a2+l
2 _
But 1 = 1 VA i e o R R Answer: A

422 +1 e+l Val4l-z

8. Theareais R(t) = [)[f(x) — g(z)]dz. Then L& = f(t) — g(t). Answer: D

o [f=[lf+[f, and [lg=[fg+ ['g, sothat [{f=3 and [fg= —10.
Then, [[3f —4g]=49. Answer: E

10. According to integration rules, if G(z) = fg}z(lf’;) f(u)du, then

G'(z) = f[h(z)] - W' (x) = flg(x)] - ¢'(x) . Therefore,
%f;\/ﬂdu:ﬁi—mﬂx: x — 22 .
Then Cf—;f;\/ﬁdu:%(\/;—QxQ):ﬁ—élx. O

11. F(z) = f(g(z)) , where g(z) = z'/3 and f(z \/m(lt Applying the
Chain Ruleresultsin
F'(z) = f'(9(z) - ¢'(x) = f'(z/?) - %af?/?’ =1+ @)1 %x—2/3 .

At =z = 0, this becomes 0% ) Answer: E

12. Theaverage of f ontheinterval [2,5]is 3 f; 2dx % % =13.

The value of x for which f(x) isequal to the averagelsthe solutionof 2 =13,
or x=1+/13. Answer: B

13. Thetangent linehasslope ¢/ = 22(sinz?)'/3 .22 . At o = \/g thisslopeis

Se(sin3)V2, /5 =2(5)" = 3% Answer: B
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3 3 —|—1 1 31 / 1

= (x4 1)%2 —2(x+ 1 1/2‘3 — 8 Answer: E
~3 0 3" :

15. Differentiating each possible answer shows that B isthe antiderivative. Answer: B

16. Answer: E
0if0<t<1
17, 2] = Lif 1<t<+/2
T 20 V2 <t< /3
3if /3<t<?2

Then, [P[P]dt = [, 0dt+ [ 1de+ [V 2dt + [T 3t

=(V2-1D+2(/3-vV2)+32-V3)=5-3—-2. Answer: A

18. fjl ﬁ dz = arctan(zx)

19. F'(z) = o f(z) + [y f(t)dt » oF'(z) = 2% f(z) + z [y f(t)dt = 22 f(z) + F ().
Answer: A

20. For 0 <z < 2% , cos(z) > cos(2x) and for %ﬁ <x <, cos(2x) > cos(x) .
Theareais fogﬂ/g[cos(x) — cos(2z)] dz + f27;/3[cos(2x) — cos(z)] dz

= [sin(z) — %sin(Qm)]‘zﬁ/g + [%sm(%’) — sin(z)] ‘;r P 3\/_ . Answer: D
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21. Theline and the parabolaintersect at y-values that are the solutions of
y+5=12(y"—5),0that y= —3(@=2),5(=10).

The graph below indicates the closed region bounded by the line and the parabola.
The area of theregion is ff’3[(y +5) — %(yQ —5)]dy = % :

(2.-3)

e Answer: E

22. Since |z| > a2 for —1 <z < 1,theareais [’ (x| — 2%)dx which, by the
symmetry of the graph is equal to 2f01(|x| —2?)dx = % :

Theregion is described in the following graph. Theintegral is negative, so the areaisthe
negative of theintegral.

xz—lxl

- \_/\_/1
Therefore, weintegrate — (2 — |x|) = |z| — 2% . The two shaded regions in the graph
below have the same area.

le—x2

/" R
Answer: C
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