Announcement for the 3rd Edition of the ACTEX Manual for Exam ASTAM

(Last updated 09/21/2024) sorted by page

Page 778 Problem 1. Firt Table.

Cumulative claim payments should be Cumulative reported claims.

Page 838 Formula 35.15.

Change the formula to:

$$\hat{\alpha}_{j}^{H} = \left(\frac{\sum_{i=j}^{n} \log(x_{(i)}/x_{(j)})}{n-j+1}\right)^{-1}$$

Page 844 Solution to Problem 8.

Change the solution to:

The sorted claims (in increasing order) are given in the following table.

0.14	0.17	0.19	0.23	0.24	0.28	0.30	0.31	0.33	0.35
0.40	0.46	0.50	0.85	0.94	1.02	1.05	1.51	2.43	2.73

Now selecting $x_{(15)} = 0.94$ as the threshold value in the Hill estimator, we have

$$\hat{\alpha}_{15}^{H} = \left(\frac{\log 1.02 + \log 1.05 + \log 1.51 + \log 2.43 + \log 2.73}{6} - \log 0.94\right)^{-1} \approx 2.19.$$

Based on the Hill estimator, the estimated probability is

$$\mathbb{P}(X > 2.5) = \frac{5}{20} \times \left(\frac{2.5}{0.94}\right)^{-2.19} \approx 0.029$$

Page 849 Solution to Problem 2.

The updated Workbook Solution can be downloaded here. Change (b) to: (b) Since N has a geometric distribution with mean 0.5, we have r = 1 and $\beta = 0.5$. Also, N has an (a, b, 0) distribution with $a = \frac{\beta}{1+\beta} = \frac{.5}{1.5} = \frac{1}{3}$ and b = 0. The geometric distribution is a special case of the negative binomial with r = 1, and in this case, since E[N] = 0.5, we have $\beta = 0.5$. Again, since P(X = 0) = 0 we have $P(S = 0) = P(N = 0) = \frac{1}{1+\beta} = \frac{2}{3}$. Also, for the severity distribution, the recursive formula becomes

$$P(S = x) = f_S(x) = \sum_{j=1}^x \frac{1}{3} \times f_X(j) \times f_S(x - j).$$

Again, since $f_X(j) = 0$ for $j \ge 5$ the formula becomes

$$P(S = x) = f_S(x) = \sum_{j=1}^{4} \frac{1}{3} \times f_X(j) \times f_S(x - j).$$

In the workbook we see that $P(S = 36) < 10^{-8}$, so $|F_S(x) - 1| < 10^{-8}$ for $x \ge 36$.

Column G in the Geometric workbook shows that the $\sum_{j=1}^{x} x \times f_S(x)$ approaches the mean of S which is $E[S] = E[N] \times E[X] = \frac{1}{2} \times 2 = 1$.