Errata and Updates for the 2022 ACTEX Manual for Exam FM

(Last updated $3 / 7 / 2023$) sorted by page

Page 21 Example (1.47), last formula.
Insert an additional item in the series of equal expressions:

$$
a(t)=e^{\int_{0}^{t} \delta(u) d u}=e^{2 \ln (t+1)}=\left(e^{\ln (t+1)}\right)^{2}=(t+1)^{2}
$$

Page 77 First line.

PV should be negative:

$$
\mathrm{PV}=-19,598.63
$$

Page 115 Formula (2.133) should have a continuous bar over a angle n in the numerator of RHS:

$$
(\bar{I} \bar{a})_{\bar{n} \mid}=\frac{\bar{a}_{\bar{n} \mid}-n \cdot v^{n}}{\delta}
$$

Page 162 Problem 8.
Change the choices to
(A) 75.82
(B) 78.06
(C) 80.37
(D) 82.75
(E) 85.19

Page 166 Solution to Problem 8.
In the last line of the 3 rd paragraph, change 95.53 to 151.94 , then make that same change (95.53 to 151.94) in the 4th paragraph, and also change 23.96 to 80.37 in the 4 th paragraph.

Page 169 Solution to Problem 15, first two equations.
The numbers 1.082 (in the first equation) and 1.086 (in the second equation) should both be 1.08:

$$
\begin{aligned}
& X \cdot(1+2 \cdot i)=1,000 \times 1.08^{2}=1,166.40 \\
& X \cdot(1+6 \cdot i)=1,000 \times 1.08^{6}=1,586.87
\end{aligned}
$$

Page 241 Solution to Problem 8, fourth equation from the end.
Delete the " $F+$ " at the beginning of the equation. It should be:

$$
F(r-i) a_{\overline{2 n \mid i}}=1,000 \cdot \frac{12 \%-10 \%}{2} \cdot a_{\overline{2 n \mid 5 \%}}=10 \cdot a_{\overline{2 n \mid 5 \%}}
$$

Page 274 Solution to Problem 4, third paragraph.
C02 should be negative:

$$
\mathrm{C} 02=-300
$$

Page 297 Solution to Problem 4, last paragraph.
The numerator of the $3^{\text {rd }}$ fraction should be 1,060 , not 60 :

$$
\frac{60}{1.0865}+\frac{60}{1.085^{2}}+\frac{1,060}{1.0805^{3}}=946.49
$$

Page 316 Sentence before Example (7.38).
The sentence should refer to "the negative of the first derivative":
In other words, Macaulay duration is the negative of the first derivative of price with respect to the force of interest, expressed as a percentage of price.

Page 352 Solution to Problem 2, first equation.
Delete the " x " that appears at the beginning of the equation. The equation should be:

$$
P(i)=\frac{D i v}{i}
$$

Page 367 Problem 10, $3^{\text {rd }}$ line.
The line should read as follows:
Given that the 4 -year spot rate is 4.9%, what is the 5 -year spot rate?
Page 373 Solution to Problem 10, $2^{\text {nd }}$ paragraph, $3^{\text {rd }}$ line.
The expression in this line should be an equality. Change the second minus sign to an equals sign:

$$
100-19.16=80.84
$$

Page 496 Solution to Problem 5, $\mathbf{2}^{\text {nd }}$ paragraph, $5^{\text {th }}$ line.
$12,697.50$ should be $12,967.50$:

$$
20 \times 648.375=12,967.50
$$

Page 499 Solution to Problem 17, equation after $2^{\text {nd }}$ paragraph.
The subscript of s should be $n+1$:

$$
\ddot{s}_{\bar{n} \mid}=s \overline{n+1}-1
$$

Page 500 Solution to Problem 20, last equation.
P should have a coefficient of 2 :

$$
\mathrm{Bal}_{8}=2 \cdot P \cdot a_{\overline{2}}=2 \times 1,060.73 \cdot\left(1.08^{-1}+1.08^{-2}\right)=3,783.13
$$

Page 501 Solution to Problem 23, equation before the final vparagraph. Adjust the parentheses in the denominator to make the calculation clearer:

$$
P=(8,000-1,165.49(2.6485)) /\left(4.1557 \times 1.065^{-3}\right)=1.428 .15 .
$$

Page 503 Solution to Problem 27, last paragraph, $2^{\text {nd }}$ line.
The value of PMT should be negative:

$$
\mathrm{CPT} \mathrm{PMT}=-4,118.93
$$

Page 525 Problem 16 has no multiple choice answers.
Insert the following answer choices:
(A) 7,695
(B) 7,756
(C) 7,805
(D) 7,856
(E) 7,905

Page 530 Solution to Problem 10, last equation.
The 182 in the denominator should be 95 . (Also, there is an extraneous second solution.):

$$
i=\left(-182 \pm \sqrt{182^{2}-4 \times 95 \times(-13)}\right) /(2 \times 95)=0.06895,-1.9847
$$

Only the first value is valid. (i can't be less than -1 .)
Page 535 Solution to Problem 25, first equation after sentence that begins 'Subtracting."
Insert v^{3} after B_{3} :

$$
2 \cdot B_{3} \cdot v^{3}=1,000 \cdot v^{2}
$$

Page 547 Solution to Problem 10, equation following the $3^{\text {rd }}$ sentence.
Delete " $=0$ " at the end of the equation, leaving:

$$
1,000 x^{4}=500 x^{3}+600 x^{2}
$$

Page 570 Solution to Problem 19, last sentence of first paragraph.
Change 1,000 to 10,000 :
$\ldots 9,000$ in the 10 th year, and then 10,000 at the end of the 10 th year ...
Page 589 Solution to Problem 22, item C, $\mathbf{2}^{\text {nd }}$ line.
Change 1,00 to 1,100 :

$$
1,100 v^{30}
$$

Page 589 Solution to Problem 22, item E, $4^{\text {th }}$ and $5^{\text {th }}$ lines.
Change "20-year" to "10-year":
paid in the third 10-year period
Page 613 Problem 12 answer choices.
Change answer choice (D) to 6.1% and change answer choice (E) to 6.3%.

Pages 621 and 622 Solution to Problem 12.

- Correct the table values for Year 3:

The Spot Rate and PV Factor should be 5.39% and 0.8543 , respectively.

$$
\begin{array}{|l|l|l|}
\hline 3 & 5.39 \% & 0.8543 \\
\hline
\end{array}
$$

- Adjust the equations to reflect the corrected values:
$(0.9615+0.9096+0.8543+0.8048+0.7536) \times 100 \cdot r+0.7536 \times 100=100$
$r=\frac{1-0.7536}{0.9615+0.9096+0.8543+0.8048+0.7536}=0.05751$
Next calculate the sale price of the bond. After two years, the bond has a remaining term of 3 years, so the price is:

$$
(0.9615+0.9096+0.8543) \times 100 \times 0.05751+0.8543 \times 100=101.10
$$

- The last line should be:

$$
\mathrm{CPT} \mathrm{I} / \mathrm{Y}=6.285
$$

Page 628 Solution to Problem 27, $4^{\text {th }}$ equation from the end.
Change 1,1683.3600 to $1,683.3600$:

$$
2.5 \cdot P=917.4312 \times 1+1,683.3600 \times 2+\frac{X}{1.09^{3}} \times 3
$$

Page 645 Solution to Problem 18.
The solution is incomplete. Add the following material to what is shown in the manual:
We can find the value of v by solving the quadratic $42 \cdot v^{2}-12 \cdot v-26=0$.
The positive root is $v=0.94252$. (Note that v cannot be negative).
So i is: $i=\frac{1}{v}-1=\frac{1}{0.94252}-1=0.0610$
Answer C
Page 648 Solution to Problem 26, last equation.
The fraction in parentheses should be raised to the $1 / 28$ power:

$$
i=4 \cdot\left[\left(\frac{800}{500 \cdot(1+j / 12)^{24}}\right)^{\frac{1}{28}}-1\right]=0.050616
$$

Page 663 Solution to Problem 9, first paragraph, $5^{\text {th }}$ line.
Change 38.7358 to 37.7358 :

$$
37.7358 \times 60=2,264.15
$$

Page 701 Problem 12, first sentence.
Change "equal face values" to "face values of 100 ":
Two newly-issued 15-year bonds have face values of 100 and equal yields to maturity.

Page 736 Solution to Problem 25, first sentence.
Change "Kevin's" to "Devon's":

$$
150 \% \text { of Devon's payments }
$$

Page 736 Solution to Problem 26, $\mathbf{3}^{\text {rd }}$ paragraph, $\mathbf{2}^{\text {nd }}$ line.
The denominator of the fraction should be 1.06^{2} (not 1.06):

$$
8,292.03 / 1.06^{2}=7,379.88
$$

Page 738 Solution to Problem 28, next-to-last equation.
Replace the last 2 lines of equations with the following 3 lines:

$$
\begin{gathered}
82\left(\left(1.076^{15}-1\right) / 0.076\right)(1.076)^{30}+x\left(\left(1.076^{30}-1\right) / 0.076\right)=27,000 \\
19,430.89+x \cdot 105.30=27,000 \\
x=(27,000-19,430.89) / 105.30=71.88
\end{gathered}
$$

Page 739 Solution to Problem 29, equation after $2^{\text {nd }}$ paragraph.
Change 106 (in the denominator of the second term) to 1.06 :
$1,000 \cdot a_{56 \%}+3,936.83 / 1.06^{6}=1,000 \times\left(1-1.06^{-5}\right) / 0.06+3,936.83 / 1.41852=6,987.68$

Page 740 Solution to Problem 30, $\mathbf{2}^{\text {nd }}$ line.
The computed value of PMT should be negative:
CPT PMT $=-2,590.09$

