Learn Today. Lead Tomorrow.

ACTEX Study Manual for
CAS Exam 7
Spring 2018 Edition
Victoria Grossack, fCAs

ACTEX Study Manual for CAS Exam 7 Spring 2018 Edition Victoria Grossack, fcas

ACTEX Learning
New Hartford, Connecticut

ACTEX Learning
 Learn Today. Lead Tomorrow.

Actuarial \mathfrak{E}° Financial Risk Resource Materials

Since 1972

Copyright © 2018, ACTEX Learning, a division of SRBooks Inc.
ISBN: 978-1-63588-244-5

Printed in the United States of America.

No portion of this ACTEX Study Manual may be reproduced or transmitted in any part or by any means without the permission of the publisher.

Your Opinion is Important to Us

ACTEX is eager to provide you with helpful study material to assist you in gaining the necessary knowledge to become a successful actuary. In turn we would like your help in evaluating our manuals so we can help you meet that end. We invite you to provide us with a critique of this manual by sending this form to us at your convenience. We appreciate your time and value your input.

Publication:

ACTEX CAS Exam 7 Study Manual, Spring 2018 Edition

I found Actex by: (Check one)

In preparing for my exam I found this manual: (Check one)
\square Good
\square Unsatisfactory

I found the following helpful:
\qquad
\qquad
\qquad
\qquad

I found the following problems: (Please be specific as to area, i.e., section, specific item, and/or page number.)
\qquad
\qquad
\qquad
\qquad
To improve this manual I would:
\qquad
\qquad
\qquad
\qquad
Name:
Address: \qquad

Phone: \qquad E-mail: \qquad
(Please provide this information in case clarification is needed.)
Send to: Stephen Camilli
ACTEX Learning
P.O. Box 715

New Hartford, CT 06057
Or visit our website at www.ActexMadRiver.com to complete the survey on-line. Click on the "Send Us Feedback" link to access the online version. You can also e-mail your comments to Support@ActexMadRiver.com.

Table of Contents

I.	Estimation of Policy Liabilities	
Brosius	Loss Development Using Credibility	PL-1
Mack 2000	Credible Claims Reserves: The Benktander Method	PL-21
Hurlimann	Credible Loss Ratio Reserves	PL-29
Clark	LDF Curve Fitting and Stochastic Reserving: A Maximum Likelihood Approach	PL-41
Mack 1994	Measuring the Variability of Chain Ladder Reserve Estimates	PL-63
Venter	Testing the Assumptions of Age-to-Age Factors	PL-79
Siewert	A Model for Reserving Workers Compensation High Deductibles	PL-99
Sahasrabuddhe	Claims Development by Layer	PL-121
Marshall	A Framework for Assessing Risk Margins	PL-133
Shapland	Using the ODP Bootstrap Model	PL-157
Verrall	Obtaining Predictive Distributions for Reserves Which Incorporate Expert Opinion	PL-187
Meyers	Stochastic Loss Reserving Using Bayesian MCMC Models	PL-195
Patrik	Reinsurance: Chapter 7 in Foundations of Casualty Actuarial Science	PL-217
Teng \& Perkins	Estimating the Premium Asset on Retrospectively Rated Policies	PL-247
II.	Insurance Company Valuation	
Goldfarb	P\&C Insurance Company Valuation	ICV-1
III.	Enterprise Risk Management	
Brehm et al.	Enterprise Risk Analysis for Property \& Liability Insurance Companies Ch. 1, Introduction	ERM-1
Brehm et al.	Enterprise Risk Analysis for Property \& Liability Insurance Companies Ch. 2, §2.1, Corporate Decision Making Using an Enterprise Risk Model, Mango	ERM-9

Brehm et al.	Enterprise Risk Analysis for Property \& Liability Insurance Companies Ch. 2, §2.2, Risk Measures and Capital Allocation, Venter	ERM-15
Brehm et al.	Enterprise Risk Analysis for Property \& Liability Insurance Companies Ch. 2, §2.3, Regulatory and Rating Agency, Witcraft	ERM-25
Brehm et al.	Enterprise Risk Analysis for Property \& Liability Insurance Companies Ch. 2, §2.4, Asset Liability Management, Brehm	ERM-29
Brehm et al.	Enterprise Risk Analysis for Property \& Liability Insurance Companies Ch. 2, §2.5, Measuring Value in Reinsurance, Venter, Gluck, Brehm	ERM-35
Brehm et al.	Enterprise Risk Analysis for Property \& Liability Insurance Companies Ch. 3, §3.1, Considerations on Implementing Internal Risk Models, Mango	ERM-43
Brehm et al.	Enterprise Risk Analysis for Property \& Liability Insurance Companies Ch. 3, §3.2, Modeling Parameter Uncertainty, Venter	ERM-49
Brehm et al.	Enterprise Risk Analysis for Property \& Liability Insurance Companies Ch. 3, §3.3, Modeling Dependency: Correlations \& Copulas, Venter	ERM-55
Brehm et al.	Enterprise Risk Analysis for Property \& Liability Insurance Companies Ch. 4, §1, Operational Risk, Mango \& Venter	ERM-63
Brehm et al.	Enterprise Risk Analysis for Property \& Liability Insurance Companies Ch. 4, §4.2, Strategic Risk, Mango	ERM-75
Brehm et al.	Enterprise Risk Analysis for Property \& Liability Insurance Companies Ch. 5, §5.4, Approaches to Modeling the Underwriting Cycle, Major	ERM-85

Introduction and Notes on Past Exam Questions and Answers and the Material

Greetings! In this actuarial study manual you will find summary outlines and questions and answers for the readings for Part 7. They are divided into three groups: Policy Liabilities (PL), Insurance Company Valuation (ICV), and Enterprise Risk Management (ERM).

Questions and parts of some solutions have been taken from material copyrighted by the Casualty Actuarial Society. They are reproduced in this study manual with the permission of the CAS solely to aid students studying for the actuarial exams. Some editing of questions has been done. Students may also request past exams directly from the society. I am very grateful to the CAS for its cooperation and permission to use this material. It is, of course, in no way responsible for the structure or accuracy of the manual.
Exam questions are identified by numbers in parentheses at the end of each question. CAS questions have four numbers separated by hyphens: the year of the exam, the number of the exam, the number of the question, and the points assigned.
In addition to the old exam questions and the summary outlines, review questions are included for most of the newer material. Some of the review questions are designed to help students process and memorize the material, while others have been designed to be more like potential exam questions.
Page numbers (p.) with solutions refer to the reading to which the question has been assigned unless otherwise noted. Note that parts of some exam questions may make use of material that is no longer included in the syllabus. Although I have made a conscientious effort to eliminate mistakes and incorrect answers, I am certain some remain. I encourage students who find errors to bring them to my attention. Please check our web site for corrections subsequent to publication.

I would like to thank Chris Van Kooten for previous contributions to this manual, which include many summary outlines and past examination answers.
To the students who make use of this manual, feedback is welcome. Good luck on May 2, 2018! VAG

SECTION I

ESTIMATION OF POLICY LIABILITIES

Eric Brosius
 Loss Development Using Credibility

Outline

I. Introduction
A. What loss development method do you select when there are large random fluctuations in year to year loss experience?
B. Least squares development is shown to provide the best linear approximation to the Bayesian estimate and is contrasted with other standard development techniques.
II. Notation
A. $L(x)$ - estimate of ultimate losses \hat{y}, given losses to date of x and historical experience $\left(x_{i}, y_{i}\right)$
B. Y - random variable representing claims incurred
C. X - random variable representing number of claims reported at year end
D. $Q(X)=E(Y \mid X=x)$, expected total number of claims
E. $R(X)=E(Y-X \mid X=x)=Q(X)-x$, expected number of claims outstanding
F. MSE - mean squared error
G. EVPV - Expected Value of the Process Variance - $E_{Y}(\operatorname{Var}(X \mid Y))$
H. VHM - Variance of the Hypothetical Means - $\operatorname{Var}_{Y}(E(X \mid Y))$
III. Least Squares Development
A. $L(x)=\mathrm{a}+\mathrm{b} x$, where
B. $\mathrm{b}=\frac{\overline{x y}-\bar{x} \bar{y}}{\overline{x^{2}}-\bar{x}^{2}}$
C. $\mathrm{a}=\bar{y}-\mathrm{b} \bar{x}$

IV. Special Cases of Least Squares Development

A. When x and y are totally uncorrelated, $\mathrm{b}=0$

1. $L(x)=\mathrm{a}$, the "budgeted loss method"
B. When the observed link ratios y / x are all equal, $\mathrm{a}=0$
2. $L(x)=\mathrm{b} x$, the "link ratio method"
C. When $\mathrm{b}=1$,
3. $L(x)=\mathrm{a}+x$, the "Bornhuetter-Ferguson method"

V. Hugh White's Question

A. If actual losses are higher than expected losses what do you do?

1. Reduce the bulk reserve a corresponding amount (Budgeted Loss Method)
2. Leave the bulk reserve at the same percentage level of expected losses (Bornhuetter-Ferguson Method)
3. Increase the bulk reserve in proportion to the increase in actual reported over expected reported (Link Ratio Method)
B. These options are 3 points on the least squares continuum and the actual answer is likely to lie somewhere on that continuum.

VI. Bayesian Development Examples

A. Various examples using Bayesian estimation are used to show that the least squares estimate is superior to the link ratio, budgeted loss and Bornhuetter-Ferguson estimates:
B. Simple Model

1. included to demonstrate method
2. $\quad Q(x)=\frac{2}{3} x+\frac{1}{3}, \quad R(x)=-\frac{1}{3} x+\frac{1}{3}$, based on parameters in example
3. The function $Q(x)$ does not align with any of the three special cases, but does lie on the least squares continuum.
C. Poisson-Binomial Example
4. Poisson process determines ultimate claims (y) and reported claims (x) are determined by a Binomial process with the Poisson outcome y as the first parameter.
5. $Q(x)=x+2$, based on the parameters given in the paper
6. This example is used to show that the link ratio method can't reproduce the Bayesian estimate $\mathrm{Q}(\mathrm{x})$, since there is no c , such that $c x \equiv x+2$.
7. Alternative Options for c
a. Unbiased Estimate $-E((c-1) X)=\mu$
b. Minimized MSE - minimize $E\left(((c-1) X-\mu)^{2}\right)$
c. $\quad c=E\left(\left.\frac{Y}{X} \right\rvert\, X \neq 0\right)$
d. Salzmann's Iceberg Technique $-d=E\left(\left.\frac{X}{Y} \right\rvert\, Y \neq 0\right), c=d^{-1}$
D. General Poisson-Binomial Case
8. $Q(x)=x+\mu(1-d), R(x)=\mu(1-d)$
9. This is consistent with the form of the Bornhuetter-Ferguson estimate.
E. Negative Binomial-Binomial Case
10. $R(x)=\frac{(1-d)(1-p)}{1-(1-d)(1-p)}(x+r)$
11. By plugging in sample parameter values it can be seen that the special cases of the least squares do not apply, but the result does lie on the least squares continuum.
F. Fixed Prior Case - the ultimate number of claims is known
12. $Q(x)=k, R(x)=k-x$
13. This is consistent with the budgeted loss method.
G. Fixed Reporting Case - percentage of claims reported at yearend is always d
14. $Q(x)=d^{-1} x, R(x)=\left(d^{-1}-1\right) x$
15. This is consistent with the link ratio method.
VII. The Linear Approximation - Development Formula 1
A. Pure Bayesian analysis requires significant knowledge about the loss and loss reporting process, which may not be available. A linear approximation can be used instead (Bayesian Credibility).
B. Development Formula 1 gives the best linear approximation to Q :
C. $L(x)=(x-E(X)) \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}+E(Y)$
D. With historical experience, we can estimate the parts:
E. $\operatorname{Cov}(X, Y)=\overline{X Y}-\bar{X} \bar{Y}, \operatorname{Var}(X)=\overline{X^{2}}-\bar{X}^{2}, E(X)=\bar{X}, E(Y)=\bar{Y}$
F. Which gives the general least squares equation:
G. $L(x)=(x-\bar{X}) \frac{\overline{X Y}-\bar{X} \bar{Y}}{\bar{X}^{2}-\bar{X}^{2}}+\bar{Y}$
H. Potential problems in parameter estimation:
16. Major changes in loss experience should be adjusted for:
a. Inflation
b. Exposure growth
17. Sampling error
18. Should substitute link ratio method when $a<0$
19. Should substitute budgeted loss method when $b<0$
VIII. Credibility Form of the Development Formula - Development Formula 2
A. If there is a real number $d \neq 0$, such that $E(X \mid Y=y)=d y$ for all y , then the best linear approximation to Q is given by development formula 2 :
B. $L(x)=Z \frac{x}{d}+(1-Z) E(Y)$, where $Z=\frac{V H M}{V H M+E V P V}$
C. This is a credibility weighting of the link ratio method and the budgeted loss method.
D. Special Cases:
20. Poisson-Binomial and other Bornhuetter-Ferguson Cases
a. $Z=d$
21. Negative Binomial-Binomial Case
a. $\quad Z=\frac{d}{(d+p(1-d))}$
IX. The Case Load Effect - Development Formula 3
A. If the rate of claim reporting is a decreasing function of the number of claims and there are real numbers $d \neq 0$ such that $E(X \mid Y=y)=d y+x_{0}$, then define development formula 3 :
22. $L(x)=Z \frac{x-x_{0}}{d}+(1-Z) E(Y)$
X. Mechanics of the Least Squares Approach
A. Adjust data for exposure growth and inflation
B. Develop most mature years to ultimate based on assumed tail factor
C. Develop next oldest year to ultimate using least squares on the complete years
D. Repeat one year at a time until all years have been developed

Past CAS Examination Questions

1. According to Brosius, in "Loss Development Using Credibility," when using historical data to estimate ultimate losses as of a certain development point, if incurred losses are uncorrelated from one age of development to the next, then the least-squares estimate will equal the budgeted loss estimate. (00-6-2-.5)
2. You are given the information below. The tail factor from 48 months to ultimate is 1.0375.

Incurred Losses (\$000)

Accident	Age of Development (Months)				
Year	$\underline{12}$	$\underline{24}$	$\underline{36}$	$\underline{48}$	$\underline{60}$
1995	100	120	130	140	145
1996	110	130	150	160	
1997	130	140	150		
1998	140	150			
1999	140				

a. Based on the methodology described in Brosius's "Loss Development Using Credibility," estimate the ultimate losses for accident year 1997 using the methods below. Show all work.
i) Least-squares approach
ii) Link ratio approach
iii) Budgeted loss approach
b. Using the results from a., calculate the credibility value (Z) and use it to prove that the credibility weighted average of your results from the link ratio and budgeted loss ratio approaches equals the least-squares approach. Show all work. (00-6-41-4)
3. According to Brosius, in "Loss Development Using Credibility," the relationship between covariance (X, Y), where X is the reported loss and Y is the ultimate loss, and variance (X) determines which of three reserving methodologies is optimal. Assuming that reported losses at the valuation date are higher than expected, match each of the three loss reserving methods on the left with the covariance/variance relationship on the right under which the method is optimal.

1. Budgeted loss method
a. $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\operatorname{Var}(\mathrm{X})$
2. Bornhuetter-Ferguson method
b. $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})<\operatorname{Var}(\mathrm{X})$
3. Link ratio method
c. $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})>\operatorname{Var}(\mathrm{X})$
A. 1a, 2c, 3b
B. $1 \mathrm{~b}, 2 \mathrm{a}, 3 \mathrm{c}$
C. 1b, 2c, 3a
D. 1c, 2a, 3b
E. 1c, 2b, 3a
(01-6-22-.5)
4. You are given the following information:
i) A $\$ 250,000$ cap on noneconomic damages in medical malpractice suits was eliminated effective with January 1, 2000 and subsequent occurrences.
ii) Expected accident year 2000 losses if cap was still in effect: $\$ 25$ million.
iii) Expected increase in accident year 2000 losses from cap elimination is 40%.
iv) Expected percentage of accident year losses reported at 12 months before cap elimination is 40%.
v) Expected percentage of accident year losses reported at 12 months after cap elimination is 30%.
vi) Estimated standard deviation of ultimate losses is $\$ 10$ million after the elimination of the cap.
vii) Estimated standard deviation of the ratio of reported loss to ultimate loss at 12 months of development is .20 after the elimination of the cap.
viii) Reported accident year 2000 losses at 12 months of development are $\$ 15$ million.
ix) There is no loss development beyond 48 months.

Calculate the ultimate loss estimate for accident year 2000 using the Bayesian credibility method as discussed in Brosius's "Loss Development Using Credibility." Show all work. (01-6-30-3)
5. You are given the following information:

Incurred Losses (\$000)			
Accident Year	48 Months 1993		Ultimate Loss
	65		90
1994	50	80	
1995	70	85	
1996	75	95	
1997	60		

Assume level premium writings throughout the 1993-1997 time period. According to Brosius, answer the following.
a. Calculate a link ratio estimate and a budgeted loss estimate of the ultimate incurred loss for accident year 1997 using an all-year weighted average. Show all work.
b. Calculate the least-square estimate of ultimate incurred loss for accident year 1997. Show all work.
c. Display the least-square estimate in the form of a credibility-weighted average of the link ratio estimate and budgeted loss estimate calculated in a. Show all work. (02-6-211/1.5/.5)
6. Let $L(x)=a+b x$ be the result of a line fit to accident year pairs (x, y) of reported claims from successive development periods. Let $L(x)$ be our estimate of y, given that we have already observed x. According to Brosius, which one of the following statements is true?
A. If $\mathrm{a}>0$ and $\mathrm{b}=1$, then $\mathrm{L}(\mathrm{x})$ is identical to a Bornhuetter-Ferguson estimate.
B. If $\mathrm{a}>0$ and $\mathrm{b}<0$, then $\mathrm{L}(\mathrm{x})$ is identical to a budgeted loss estimate.
C. If $a=1$ and $b>0$, then $L(x)$ is identical to a link ratio estimate.
D. If $\mathrm{a}=0$ and $\mathrm{b}>0$, then $\mathrm{L}(\mathrm{x})$ is identical to a budgeted loss estimate.
E. If $a<0$ and $b>0$, then $L(x)$ is identical to a link ratio estimate. (03-6-3-1)
7. You are given the following information:

Accident	Earned Exposures (000)	Incurred Losses (\$000)	
		27	39
Year		Months	Months
1997	100	35	55
1998	200	65	80
1999	200	75	85
2000	250	85	95
2001	300	97	

Incurred losses will increase by an additional 20% from 39 months to ultimate. Based on Brosius, calculate the accident year 2001 ultimate loss estimate using each of the following methods. Show all work.
a. All-year weighted average link ratio method
b. Budgeted loss method. (03-6-22-1ea.)
8. You are given the following information:

Cumulative Losses Reported

Accident Year		CAge of Development in Months)		
2001		12		24
2002	$\$ 1,200$		$\$ 1,800$	$\$ 2,000$
2003	1,100	1,650	1,900	
2004	1,300	1,860		
	1,400			

Using the least-squares method presented by Brosius, calculate the calendar year 2005 loss emergence for accident year 2004. (05-6-12-2)
9. $\quad \mathrm{X}$ and Y are the two random variables describing reported losses and ultimate losses, respectively. Which of the following statements are true regarding the best linear approximation to the Bayesian estimate of Y?

1. If $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})<\operatorname{Var}(\mathrm{X})$, a greater-than-expected reported amount should lead to an increase in the IBNR reserve.
2. If $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\operatorname{Var}(\mathrm{X})$, a change in the reported amount should not affect the IBNR reserve.
3. If $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})>\operatorname{Var}(\mathrm{X})$, a greater-than-expected reported amount should lead to an increase in the IBNR reserve.
A. 1
B. 2
C. 3
D. 1,2
E. 2,3 (06-6-4-1)
4. Given the following information:

Incurred Losses

Age of Development in Months

Accident Year		$\frac{12}{12}$	$\frac{24}{2001}$
		10,000	
2002		11,000	28,000
2003		12,000	27,000
2004		11,500	28,000
2005		12,500	

According to the least-squares method, what is the expected incurred loss for accident year 2005 at 24 months?
A. $<\$ 27,500$
B. $\geq \$ 27,500$, but $<\$ 28,500$
C. $\geq \$ 28,500$, but $<\$ 29,500$
D. $\geq \$ 29,500$, but $<\$ 30,500 \quad$ E. $\geq \$ 30,500 \quad(06-6-5-1)$
11. As the result of recent tort reform, general liability expected ultimate losses decreased from $\$ 60$ million to $\$ 50$ million for accident year 2005. Without the reform, 55% of ultimate accident year 2005 losses would have been reported within twelve months. With the reform, this percentage is expected to rise to 63%. At December 31, 2005, $\$ 35$ million of losses have been reported for accident year 2005.
a. What is the link ratio estimate of the ultimate loss for accident year 2005?
b. What is the Bornhuetter-Ferguson estimate of the ultimate loss for accident year 2005?
c. Given that Y is expected ultimate losses and X is reported losses at 12 months, and using the estimates below, what is the ultimate loss for accident year 2005, using Brosius's Bayesian credibility method?

$$
\operatorname{Var}_{\mathrm{Y}}[\mathrm{E}(\mathrm{X} \mid \mathrm{Y})]=14.3 \quad \mathrm{E}_{\mathrm{Y}}[\operatorname{Var}(\mathrm{X} \mid \mathrm{Y})]=57
$$

d. Why is it inappropriate to use the least-squares method in the situation described in this case? (06-6-15-.5/.5/1/.5)
12. An insurer has been experiencing a deteriorating loss ratio for the last five years on its personal auto business, due to the weakening of underwriting standards. Explain why the least-squares development method may not be appropriate. (07-6-42b-.5)
13. Given the following:

	Cumulative Reported Losses (\$000)			
	Age of Development in Months			
Acc Year	12	24	36	48
2004	8,847	12,204	14,332	17,021
2005	10,280	14,650	16,807	
2006	11,747	14,826		
2007	12,077			

a. Estimate the cumulative reported loss as of 24 months for accident year 2007 using the link ratio method.
b. Estimate the cumulative reported loss as of 24 months for accident year 2007 using the budgeted loss method.
c. Estimate the cumulative reported loss as of 24 months for accident year 2007 using the least-squares method. (08-6-9-.5/.5/1)
14. Given the following reported loss information:

Accident Year		As of 60 Months	
		As of 72 Months	
2000	$\$ 40,000$		
2001	30,000		60,000
2002	40,000		42,000
2003	30,000		32,000
2004	50,000		

a. Use Brosius' least-squares method to calculate the expected losses for accident year 2004 at 72 months.
b. Briefly explain whether least squares is an appropriate method to use in this situation. (09-6-3-2/.5)
15. Given the following information (\$000):

Accident	Incurred Loss	Incurred Loss
Year	at 12 Months	at 24 Months
2006	10,000	12,000
2007	16,000	20,000
2008	10,000	16,000
2009	15,000	

Use the method of least squares development to calculate the estimated incurred loss at 24 months for the accident year 2009. (10-6-11-2)
16. Given the following information (\$000) for a line of business:

Accident Year	Written Premium	Earned Premium		Cumulative Reported Losses 12 Months		
2007	5,756		4,779		413	2,310
2008	6,907	5,735		0	541	1,309
2009	8,289	6,882		936	2,311	
2010	9,946	8,258		50		

- The tail factor from 36 months to ultimate is 1.050 .
a. Use the least squares method to estimate ultimate losses for the 2009 accident year.
b. Discuss the reasonability of the estimate derive in part a. above, relative to the estimate that would be produced by the link ratio method.
c. Illustrate graphically the relationships between the link ratio method, budgeted loss method and least squares method in modeling the loss development process. (11-7-1-1/0.5/1.5)

17. Given the following information:

Incurred Loss Ratio

Accident Year	As of 36 Months	As of 48 Months
2006	0.222	0.375
2007	0.451	0.675
2008	0.446	0.605
2009	0.228	

a. Estimate the loss ratio for accident year 2009 as of 48 months using the least squares method.
b. An alternate approach to estimating the accident year 2009 loss ratio as of 48 months is to use the arithmetic average of the link ratio method and the budgeted loss ratio method. Using the answer from part a. above, demonstrate whether this averaging approach is optimal. (12-7-41.5/1.5)
18. Given the following information:

Cumulative Losses $(\$ 000,000)$

Accident $\underline{\text { Year }}$	Reported at 2008	U4 Months
2009	12	$\frac{\text { Loss }}{18}$
2010	14	16
2011	12	20
2012	21	18

An insurer writes annual policies that incept on January 1. Exposure and coverage levels were constant for 2008 through 2011. On January 1, 2012, policy coverage was expanded and pricing actuaries estimated the following:

Loss amounts will increase by 25% due to the expanded coverage.
75% of ultimate losses are expected to be reported by 24 months, with a standard deviation of 8% of estimated ultimate loss.
Standard deviation of accident year 2012 ultimate loss will be $\$ 3$ million.
a. Calculate the projected accident year 2012 ultimate loss using Bayesian credibility methods.
b. Explain why the least squares method is not appropriate for calculating the accident year 2012 loss.
(14-7-1-2:1.5/.5)
19. Given the following information $(\$ 000,000)$:

	Cumulative	
Accident	Reported Loss	Ultimate
Year	@, 24 Months	Loss
2011	36	75
2012	40	71
2013	35	64
2014	25	

a. Using the least-squares method, estimate ultimate loss for Accident Year 2014.
b. For each of the following scenarios, briefly describe a potential problem with the leastsquares method:
i. The slope parameter is negative
ii. The intercept parameter is negative
c. Due to a regulatory change, the following is anticipated:

- No change in the reporting pattern
- Standard deviation of reported loss as of 24 months will be 10% of estimated ultimate loss
- Expected ultimate loss for 2014 will decrease 20%
- Standard deviation of accident year 2014 ultimate loss is expected for be $\$ 6,000,000$

Using the Bayesian credibility method, estimate the revised ultimate loss for accident year 2014. (16-7-2-3.25:1.25/0.5/1.5)
20. Given the following loss ratio triangle:

Cumulative Reported Loss Ratios

Accident Year	12 months	24 months	36 months	48 months	60 months
2010	3.0%	10.0%	15.7%	37.0%	37.0%
2011	5.1%	5.1%	25.0%	44.2%	48.0%
2012	2.5%	3.0%	40.0%	57.0%	59.2%
2013	1.6%	15.7%	22.2%	21.0%	
2014	0.0%	7.8%	16.7%		
2015	6.3%	12.4%			
2016	4.7%				

Assume a tail factor of 1.15 from 60 months to ultimate

Calculate the accident year 2014 ultimate loss ratio using the least squares method. (17-7-2-1.75)

$\underline{\text { Solutions to Past CAS Examination Questions }}$

1. T, p. 3.
2. a. i) Ultimate Incurred Losses $97=(160)(1.0375)=166$

$$
\overline{\mathrm{x}}=(130+150) / 2=140 \quad \overline{\mathrm{y}}=(145+166) / 2=155.5
$$

$$
\overline{x y}=[(130)(145)+(150)(166)] / 2=21,875
$$

$$
\overline{\mathrm{x}}^{2}=\left[(130)^{2}+(150)^{2}\right] / 2=19,700
$$

b. $\frac{\overline{x y}-(\bar{x})(\bar{y})}{\overline{x^{2}}-(\bar{x})^{2}}=\frac{21,875-(140)(155.5)}{19,700-140^{2}}=1.05$
$\mathrm{a}=\bar{y}, \mathrm{~b}=\bar{x}=155.50-(1.05)(140)=8.5$
$\mathrm{L}(\mathrm{x})=\mathrm{a}+\mathrm{bx}=8.5+(1.05)(150)=166$
ii) $\mathrm{c}=\frac{\bar{y}}{\bar{x}}=155.5 / 140=1.1107 \quad \mathrm{~L}(\mathrm{x})=\mathrm{cx}=(1.1107)(150)=166.6$
iii) $\quad \mathrm{L}(\mathrm{x})=\overline{\mathrm{y}}=155.5$, pp. 2-3. \bar{y}
b. $\quad \mathrm{Z}=\mathrm{b} / \mathrm{c}=1.05 / 1.107=.9485$

$$
\mathrm{L}(\mathrm{x})=(\mathrm{Z})(\mathrm{cx})+(1-\mathrm{Z}) \overline{\mathrm{y}}=(.9485)(166.6)+(1-.9485)(155.5)=166, \text { pp. 16-17. }
$$

3. $1 \mathrm{~b}, 2 \mathrm{a}, 3 \mathrm{c}, \mathrm{pp} .4,11$.

Answer: B
4.

1) Calculate link ratio and budget ratio estimates:

$$
\mathrm{x} / \mathrm{d}=15 \overline{\mathrm{M}} / .3=50 \bar{M} \quad \mathrm{E}[\mathrm{Y}]=(25 \bar{M})(1.4)=35 \bar{M}
$$

2) Calculate VHM:
$\operatorname{VHM}=\operatorname{Var}(\mathrm{X})=\operatorname{Var}(.3 \mathrm{Y})=(.3)^{2}(10 \bar{M})^{2}=9(\bar{M})^{2}$
3) Calculate EVPV:
$\mathrm{EVPV}=\mathrm{E}\left[\mathrm{X}^{2}\right]=\mathrm{E}\left[(.2 \mathrm{Y})^{2}\right]=\{.2\}^{2}\left\{\operatorname{Var}(\mathrm{Y})+(\mathrm{E}[\mathrm{Y}])^{2}\right\}$
$\mathrm{EVPV}=[.2]^{2}\left[(10 \bar{M})^{2}+(35 \bar{M})^{2}\right]=53(\bar{M})^{2}$
4) Calculate Z :
$\left.\left.\mathrm{Z}=\mathrm{VHM} /(\mathrm{VHM}+\mathrm{EVPV})=9(\bar{M})^{2} /[9 \bar{M})^{2}+53 \bar{M}\right)^{2}\right]=.145$
5) Calculate the ultimate loss estimate:
$\mathrm{L}(\mathrm{x})=\mathrm{Zx} / \mathrm{d}+(1-\mathrm{Z}) \mathrm{E}[\mathrm{Y}]=(.145)(50 \bar{M})+(1-.145)(35 \bar{M})=37.175 \bar{M}$,
5.

a. $\bar{x}=(65+50+70+75) / 4=65 \quad \bar{y}=(90+80+85+95) / 4=87.5$
$\mathrm{c}=\bar{y} / \bar{x}=87.5 / 65=1.346$

For a link ratio estimate, we get: $\mathrm{L}(\mathrm{x})=\mathrm{cx}=(1.346)(60)=80.76$
For a budgeted loss estimate, we get: $\mathrm{L}(\mathrm{x})=\overline{\mathrm{y}}=87.5$
b. $\overline{x y}=[(65)(90)+(50)(80)+(70)(85)+(75)(95)] / 4=5,731.25$

$$
\bar{x}^{2}=\left[(65)^{2}+(50)^{2}+(70)^{2}+(75)^{2}\right] / 4=4,312.5
$$

$$
\mathrm{b}=\frac{\overline{x y}-(\bar{x})(\bar{y})}{\overline{x^{2}}-(\bar{x})^{2}}=\frac{5,731.25-(65)(87.5)}{4,312.5-65^{2}}=.5
$$

$$
\mathrm{a}=\bar{y}-\mathrm{b} \bar{x}=87.5-(.5)(65)=55 \quad \mathrm{~L}(\mathrm{x})=\mathrm{a}+\mathrm{bx}=55+(.5)(60)=85
$$

c. $\quad \mathrm{Z}=\mathrm{b} / \mathrm{c}=.5 / 1.346=.3715$
$\mathrm{L}(\mathrm{x})=(\mathrm{Z})(\mathrm{cx})+(1-\mathrm{Z}) \bar{y}=(.3715)(80.76)+(1-0.3715)(87.5)=85, \mathrm{pp} .2-3,16-17$.
6. A. T, pp. 3-4
B. F, p. $3-$ Substitute $" b=0$ " for $" b<0 . "$
C. F, p. $3-$ Substitute $\mathrm{a}=0$ " for $\mathrm{a}=1 .{ }^{\prime}$
D. F, p. $3-$ Substitute $" \mathrm{a}>0$ " for $\mathrm{a}=0$ " and $\mathrm{b} \mathrm{b}=0$ " for $" \mathrm{~b}>0$. .
E. \quad F, p. $3-$ Substitute $" \mathrm{a}=0$ " for $" \mathrm{a}<0$. .

Answer: A
7. a. Since the exposure level changes, use loss ratios rather than losses:

1997	.350	.550
1998	.325	.400
1999	.375	.425
2000	.340	.380
2001	.323	
$\bar{x}=(.350+.325+.375+.340) / 4=.348$		
$\bar{y}=(1.2)(.550+.400+.425+.380) / 4=.527$		
$\mathrm{c}=\bar{y} / \bar{x}=.527 / .348=1.514 \quad \mathrm{~L}(\mathrm{x})=\mathrm{cx}=(1.514)(97,000)=146,858$		

b. $\quad \mathrm{L}(\mathrm{x})=300 \bar{y}=(300,000)(.527)=158,100, \mathrm{pp} .2,16-17$.
8. $\bar{x}=(1,200+1,100+1,300) / 3=1,200 \quad \overline{\mathrm{y}}=(1,800+1,650+1,860) / 3=1,770$
$\overline{x y} \bar{M}=[(1,200)(1,800)+(1,100)(1,650)+(1,300)(1,860)] / 3=2,131,000$
$\overline{\mathrm{x}}^{2}=\left[(1,200)^{2}+(1,100)^{2}+(1,300)^{2}\right] / 3=1,446,667$
$\mathrm{b}=\frac{\overline{x y}-(\bar{x})(\bar{y})}{\overline{x^{2}}-(\bar{x})^{2}}=\frac{2,131,000-(1200)(1770)}{1,446,667-1200^{2}}=1.05$
$\mathrm{a}=\bar{y}-\mathrm{b} \bar{x}=1,770-(1.05)(1,200)=510$
$\mathrm{L}(\mathrm{x})=\mathrm{a}+\mathrm{bx}=510+(1.05)(1,400)=1,980, \mathrm{pp} .2-3$.
9. 1. F, p. 11 - Substitute "decrease" for "increase."
2. T, p. 11
3. T, p. 11

Answer: E
10. $\bar{x}=(10+11+12+11.5) / 4=11.125 \quad \bar{y}=(25+28+27+28) / 4=27$
$\overline{x y}=[(10)(25)+(11)(28)+(12)(27)+(11.5)(28)] / 4=301$
$\overline{\mathrm{x}}^{2}=\left[(10)^{2}+(11)^{2}+(12)^{2}+(11.5)^{2}\right] / 4=124.3125$
$\mathrm{b}=\frac{\overline{x y}-(\bar{x})(\bar{y})}{\overline{x^{2}}-(\bar{x})^{2}}=\frac{301-(11.125)(27)}{124.3125-11.125^{2}}=1.14286$
$\mathrm{a}=\bar{y}-\mathrm{b} \bar{x}=27-(1.14286)(11.125)=14.28568$
$\mathrm{L}(\mathrm{x})=\mathrm{a}+\mathrm{bx}=14.28568+(1.14286)(12.5)=28.57143, \mathrm{pp} .2-3$.
Answer: C
11. a. $\quad \mathrm{x} / \mathrm{d}=35 \bar{M} / .63=55,555,556$, p. 2.
b. $\quad \mathrm{L}=35 \bar{M}+\mathrm{dE}[\mathrm{Y}]=35 \bar{M}+(.37)(50 \bar{M})=53.5 \bar{M}$, p. 3.
c. $\quad \mathrm{Z}=\mathrm{VHM} /(\mathrm{VHM}+\mathrm{EVPV})=14.3 /(14.3+57)=.201$
$\mathrm{L}(\mathrm{x})=\mathrm{Zx} / \mathrm{d}+(1-\mathrm{Z}) \mathrm{E}[\mathrm{Y}]=(.201)(55,555,556)+(1-.201)(50 \mathrm{M})=51,116,667$, pp. 13-15.
d. It is inappropriate because there are significant changes in the loss history, p. 19.
12. It is not appropriate when "year to year changes are due largely to systematic shifts in the book of business," pp. 12, 19.
13. a. $\bar{x}=(8,847+10,280+11,747) / 3=10,291$

$$
\bar{y}=(12,204+14,650+14,826) / 3=13,893
$$

$$
\mathrm{c}=\bar{y} / \bar{x}=13,893 / 10,291=1.35 \quad \mathrm{~L}(\mathrm{x})=\mathrm{cx}=(1.35)(12,077)=16,304
$$

b. $\quad \mathrm{L}(\mathrm{x})=\bar{y}=13,893$
c. $\overline{x y}=[(8,847)(12,204)+(10,280)(14,650)+(11,747)(14,826)] / 3=144,243,937$
$\overline{\mathrm{x}}^{2}=\left[(8,847)^{2}+(10,280)^{2}+(11,747)^{2}\right] / 3=107,313,273$
$\mathrm{b}=\frac{\overline{x y}-(\bar{x})(\bar{y})}{\overline{x^{2}}-(\bar{x})^{2}}=\frac{144,243,937-(10,291)(13,893)}{107,313,273-10,291^{2}}=.902$
$\mathrm{a}=\bar{y}-\mathrm{b} \bar{x}=13,893-(.902)(10,291)=4,611$
$\mathrm{L}(\mathrm{x})=\mathrm{a}+\mathrm{bx}=4,611+(.902)(12,077)=15,504, \mathrm{pp} .2-3$.
14. a. $\bar{x}=(40,000+30,000+40,000+30,000) / 4=35,000$

$$
\bar{y}=(45,000+60,000+42,000+32,000) / 4=44,750
$$

```
\(\overline{x y}=[(40,000)(45,000)+(30,000)(60,000)+(40,000)(42,000)+(30,000)(32,000)] / 4\)
\(\overline{x y}=1,560 \bar{M}\)
```

$$
\begin{aligned}
& \overline{\mathrm{x}}^{2}=\frac{\left[(40,000)^{2}+(30,000)^{2}+(40,000)^{2}+(30,000)^{2}\right] / 4=1,250 \overline{\mathrm{M}}}{\overline{x y}-(\bar{x})(\bar{y})} \\
& \mathrm{b}=\frac{1,560 M-(35,000)(44,750)}{x^{2}-(\bar{x})^{2}}=\frac{1,250 M-35,000^{2}}{}=-0.25 \\
& \mathrm{a}=\bar{y}-\mathrm{b} \bar{x}=44,750-(-.25)(35,000)=53,500 \\
& \mathrm{~L}(\mathrm{x})=\mathrm{a}+\mathrm{bx}=53,500+(-.25)(50,000)=41,000
\end{aligned}
$$

b. Since $b<0$, the least-squares estimate is not appropriate. Because of this the estimate produced by the budgeted loss method $(\bar{y}=44,750)$ may be substituted, pp. 2-4.
15. $\bar{x}=(10,000+16,000+10,000) / 3=12,000$
$\bar{y}=(12,000+20,000+16,000) / 3=16,000$
$\overline{x y}=[(10,000)(12,000)+(16,000)(20,000)+(10,000)(16,000)] / 3=200,000,000$
$\overline{x^{2}}=\left[(10,000)^{2}+(16,000)^{2}+(10,000)^{2}\right] / 3=152,000,000$
$b=\frac{\overline{x y}-\bar{x} \bar{y}}{\bar{x}^{2}-\bar{x}^{2}}=\frac{200 M-(12,000)(16,000)}{152 M-(12,000)^{2}}=1$
$a=\bar{y}-b \bar{x}=16,000-12,000=4,000$
$L(x)=a+b x=4,000+15,000=19,000$
16. a. Ultimate losses for AY 2007 and 2008:

2007: Ult $=5,845(1.05)=6,137.25$
2008: $U l t=1,309(1.05)=1,374.45$

Loss ratios for AY 2007 and 2008 (Divide by earned premium):

$$
\begin{aligned}
& \bar{x}=(0.483+0.094) / 2=0.289 \\
& \bar{y}=(1.284+0.240) / 2=0.762 \\
& \overline{x y}=[(0.483)(1.284)+(0.094)(0.240)] / 2=0.321 \\
& \overline{x^{2}}=\left[(0.483)^{2}+(0.094)^{2}\right] / 2=0.121
\end{aligned}
$$

$b=\frac{\overline{x y}-\bar{x} \bar{y}}{\overline{x^{2}}-\bar{x}^{2}}=\frac{0.321-(0.289)(0.762)}{0.121-(0.289)(0.289)}=2.689$
$a=\bar{y}-b \bar{x}=0.762-2.689(0.289)=-0.015$
$L(x)=a+b x=-0.015+2.689(0.336)=0.889$

Ult Loss $2009=6,882(0.889)=6,118.10$
b. \quad Since the estimate of a is less than 0 the least squares method will produce estimates of y that are less than 0 when x is small. Brosius suggests substituting the link-ratio method when $\mathrm{a}<0$. The link-ratio method will produce positive estimates of y even for small values of x.
c.

17.
a. $\quad L(x)=a+b x$
$\bar{x}=(0.222+0.451+0.446) / 3=0.373$
$\bar{y}=(0.375+0.675+0.605) / 3=0.552$
$\overline{x y}=[(0.222)(0.375)+(0.451)(0.675)+(0.446)(0.605)] / 3=0.219$
$\overline{x^{2}}=\left[(0.222)^{2}+(0.451)^{2}+(0.446)^{2}\right] / 3=0.151$
$b=\frac{\overline{x y}-\bar{x} \bar{y}}{\overline{x^{2}}-\bar{x}^{2}}=\frac{0.219-(0.373)(0.552)}{0.151-(0.373)(0.373)}=1.104$
$a=\bar{y}-b \bar{x}=0.552-1.104(0.373)=0.140$
$L(x)=a+b x=0.140+1.104(0.228)=0.392$

Ult Loss Ratio 2009 = 39.2 $\%$
b. In a credibility weighting $Z=b / c$, where $c=\bar{y} / \bar{x}$
$Z=1.104 /(0.552 / 0.373)=0.746$
Since $Z=0.746 \neq 0.5$ the arithmetic average does not produce an optimal solution.
18. a. $\mathrm{X}=$ loss reported at 24 months
$\mathrm{Y}=$ Ultimate losses
$\mathrm{L}(\mathrm{x})=\mathrm{Z}(\mathrm{x} / \mathrm{d})+(1-\mathrm{Z}) \mathrm{E}[\mathrm{Y}]$
$\mathrm{Z}=\mathrm{VHM} /(\mathrm{VHM}+\mathrm{EVPV})$
$\mathrm{VHM}=(\mathrm{E}[\mathrm{D}] \times \sigma(\mathrm{y}))^{2}=((.75)(3))^{2} \quad=5.0625$
$\mathrm{EVPV}=\operatorname{Var}(\mathrm{D})\left[\operatorname{Var}(\mathrm{y})+\mathrm{E}[\mathrm{y}]^{2}\right]=(0.08)^{2}\left[3^{2}+[(1.25)(\{18+16+20+18\} / 4)]^{2}\right]=3.2976$
$\mathrm{Z}=5.0625 /(5.0625+3.2976)=.606$
$\mathrm{L}(\mathrm{x})=(.606)(21 / .75)+(1-.606)(22.5)=25.833$ million
b. The least squares method is appropriate when the distribution of loss is not changing year over year. Given the coverage expansion and change in 2012 loss distribution, we cannot use the least squares method.
19. a. $\bar{X}=\frac{36+40+35}{3}=37$
$\bar{Y}=\frac{75+71+64}{3}=70$
$\overline{X Y}=\frac{36 \times 75+40 \times 71+35 \times 64}{3}=2593.33$
$\overline{X^{2}}=\frac{36^{2}+40^{2}+35^{2}}{3}=1373.67$
$b=\frac{\overline{X Y}-\bar{X} \bar{Y}}{\overline{X^{2}}-\bar{X}^{2}}=0.713$
$a=\bar{Y}-b \times \bar{X}=43.62$
2014 Ultimate Loss $=\mathrm{a}+\mathrm{b} \times 25=61.45$
b. i. If $\mathrm{b}<0$, then y decreases as x increases.
ii. If $\mathrm{a}<0$, then y is negative for small values of x .
c. $\quad \sigma_{d}=0.1$

$$
Y=0.8 \times 70=56
$$

$$
\sigma_{Y}=6
$$

$$
d=\frac{37}{70}=0.5286
$$

$$
V H M=\sigma_{Y}^{2} d^{2}=6^{2}(0.5286)^{2}=10.058
$$

$$
E V P V=\sigma_{d}^{2}\left[\sigma_{Y}^{2}+Y^{2}\right]=(0.1)^{2}\left(6^{2}+56^{2}\right)=31.72
$$

$$
Z=\frac{V H M}{V H M+E V P V}=\frac{10.058}{10.058+31.72}=0.2407
$$

$$
L=0.2407\left(\frac{0.25}{0.5286}\right)+(1-0.2407)(56)=53.904
$$

20. Need 2013 ultimate first:
$\bar{X}=1 / 3 \times(0.37+0.442+0.57)=0.4607$
$\bar{Y}=1 / 3 \times 1.15 \times(0.37+0.48+0.592)=0.5528$
$\overline{X Y}=1 / 3 \times(0.37 \times 1.15 \times 0.37+\ldots)=0.2632$
$\bar{X}^{2}=1 / 3 \times\left(0.37^{\wedge} 2+\ldots\right)=0.2191$
$\left.\mathrm{b}=(\overline{X Y}-\bar{X} \times \bar{Y}) /\left(\bar{X}^{2} \operatorname{bar}-(\bar{X} \text { bar })^{\wedge} 2\right)\right)=1.2435$
$\mathrm{a}=\bar{Y}-\mathrm{b} \times \bar{X}=-0.0201$
Since a <0, using link ratio method instead
2013 ultimate $=0.21 \times 1.15 \times(0.37+0.48+0.592) /(0.37+0.442+0.57)=0.2520$
Calculate 2014 ultimate
$\bar{X}=1 / 4 \times(0.157+0.25+0.4+0.222)=0.2573$
$\bar{Y}=1 / 4 \times(0.37 \times 1.15+0.48 \times 1.15+0.592 \times 1.15+0.2520)=0.4776$
$\overline{X Y}=1 / 4 \times(0.157 \times(0.37 \times 1.15)+\ldots)=0.1333$
$\bar{X}^{2}=1 / 4 \times(0.157 \wedge 2+\ldots)=0.0741$
$\left.\mathrm{b}=(\overline{X Y}-\bar{X} \times \bar{Y}) /\left(\bar{X}^{2}-(\bar{X})^{\wedge} 2\right)\right)=1.3187$
$\mathrm{a}=\bar{Y}-\mathrm{b} \times \bar{X}=0.1383$
2014 ultimate $=\mathrm{a}+\mathrm{b} \times 0.167=0.359$
