With StudyPlus+

StudyPlus+ gives you digital access* to:

• Actuarial Exam & Career Strategy Guides
• Technical Skill eLearning Tools
• Samples of Supplemental Textbooks
• And more!

*See inside for keycode access and login instructions

Fall 2018 Edition | Volume I
Johnny Li, P.h.D., FSA | Andrew Ng, Ph.D., FSA

ACTEX Learning | Learn Today. Lead Tomorrow.
ACTEX is eager to provide you with helpful study material to assist you in gaining the necessary knowledge to become a successful actuary. In turn we would like your help in evaluating our manuals so we can help you meet that end. We invite you to provide us with a critique of this manual by sending this form to us at your convenience. We appreciate your time and value your input.

Publication:
ACTEX LTAM Study Manual, Fall 2018 Edition

I found Actex by: (Check one)

☐ A Professor ☐ School/Internship Program ☐ Employer ☐ Friend ☐ Facebook/Twitter

In preparing for my exam I found this manual: (Check one)

☐ Very Good ☐ Good ☐ Satisfactory ☐ Unsatisfactory

I found the following helpful:

__

__

__

I found the following problems: (Please be specific as to area, i.e., section, specific item, and/or page number.)

__

__

__

To improve this manual I would:

__

__

__

Name: __
Address: __
Phone: ___________________________ E-mail: ____________________________

(Please provide this information in case clarification is needed.)

Send to: Stephen Camilli
ACTEX Learning
P.O. Box 715
New Hartford, CT 06057

Or visit our website at www.ActexMadRiver.com to complete the survey on-line. Click on the “Send Us Feedback” link to access the online version. You can also e-mail your comments to Support@ActexMadRiver.com.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>P-7</td>
</tr>
<tr>
<td>Syllabus Reference</td>
<td>P-10</td>
</tr>
<tr>
<td>Flow Chart</td>
<td>P-13</td>
</tr>
<tr>
<td>Chapter 0 Some Factual Information</td>
<td></td>
</tr>
<tr>
<td>0.1 Traditional Life Insurance Contracts</td>
<td>C0-1</td>
</tr>
<tr>
<td>0.2 Modern Life Insurance Contracts</td>
<td>C0-3</td>
</tr>
<tr>
<td>0.3 Underwriting</td>
<td>C0-3</td>
</tr>
<tr>
<td>0.4 Life Annuities</td>
<td>C0-4</td>
</tr>
<tr>
<td>0.5 Pensions</td>
<td>C0-6</td>
</tr>
<tr>
<td>Chapter 1 Survival Distributions</td>
<td></td>
</tr>
<tr>
<td>1.1 Age-at-death Random Variables</td>
<td>C1-1</td>
</tr>
<tr>
<td>1.2 Future Lifetime Random Variable</td>
<td>C1-4</td>
</tr>
<tr>
<td>1.3 Actuarial Notation</td>
<td>C1-6</td>
</tr>
<tr>
<td>1.4 Curtate Future Lifetime Random Variable</td>
<td>C1-10</td>
</tr>
<tr>
<td>1.5 Force of Mortality</td>
<td>C1-12</td>
</tr>
<tr>
<td>Exercise 1</td>
<td>C1-20</td>
</tr>
<tr>
<td>Solutions to Exercise 1</td>
<td>C1-26</td>
</tr>
<tr>
<td>Chapter 2 Life Tables</td>
<td></td>
</tr>
<tr>
<td>2.1 Life Table Functions</td>
<td>C2-1</td>
</tr>
<tr>
<td>2.2 Fractional Age Assumptions</td>
<td>C2-6</td>
</tr>
<tr>
<td>2.3 Select-and-Ultimate Tables</td>
<td>C2-17</td>
</tr>
<tr>
<td>2.4 Moments of Future Lifetime Random Variables</td>
<td>C2-28</td>
</tr>
<tr>
<td>2.5 Useful Shortcuts</td>
<td>C2-38</td>
</tr>
<tr>
<td>Exercise 2</td>
<td>C2-42</td>
</tr>
<tr>
<td>Solutions to Exercise 2</td>
<td>C2-51</td>
</tr>
<tr>
<td>Chapter 3 Life Insurances</td>
<td></td>
</tr>
<tr>
<td>3.1 Continuous Life Insurances</td>
<td>C3-1</td>
</tr>
<tr>
<td>3.2 Discrete Life Insurances</td>
<td>C3-17</td>
</tr>
<tr>
<td>3.3 mthly Life Insurances</td>
<td>C3-26</td>
</tr>
<tr>
<td>3.4 Relating Different Policies</td>
<td>C3-29</td>
</tr>
<tr>
<td>3.5 Recursions</td>
<td>C3-36</td>
</tr>
<tr>
<td>3.6 Relating Continuous, Discrete and mthly Insurance</td>
<td>C3-42</td>
</tr>
<tr>
<td>3.7 Useful Shortcuts</td>
<td>C3-45</td>
</tr>
<tr>
<td>Exercise 3</td>
<td>C3-48</td>
</tr>
<tr>
<td>Solutions to Exercise 3</td>
<td>C3-61</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Life Annuities</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>4.1</td>
<td>Continuous Life Annuities</td>
</tr>
<tr>
<td>4.2</td>
<td>Discrete Life Annuities (Due)</td>
</tr>
<tr>
<td>4.3</td>
<td>Discrete Life Annuities (Immediate)</td>
</tr>
<tr>
<td>4.4</td>
<td>(m)thly Life Annuities</td>
</tr>
<tr>
<td>4.5</td>
<td>Relating Different Policies</td>
</tr>
<tr>
<td>4.6</td>
<td>Recursions</td>
</tr>
<tr>
<td>4.7</td>
<td>Relating Continuous, Discrete and (m)thly Life Annuities</td>
</tr>
<tr>
<td>4.8</td>
<td>Useful Shortcuts</td>
</tr>
</tbody>
</table>

Exercise 4
Solutions to Exercise 4
C4-46
C4-60

<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Premium Calculation</th>
<th>C5-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Traditional Insurance Policies</td>
<td>C5-1</td>
</tr>
<tr>
<td>5.2</td>
<td>Net Premium and Equivalence Principle</td>
<td>C5-3</td>
</tr>
<tr>
<td>5.3</td>
<td>Net Premiums for Special Policies</td>
<td>C5-12</td>
</tr>
<tr>
<td>5.4</td>
<td>The Loss-at-issue Random Variable</td>
<td>C5-18</td>
</tr>
<tr>
<td>5.5</td>
<td>Percentile Premium and Profit</td>
<td>C5-27</td>
</tr>
<tr>
<td>5.6</td>
<td>The Portfolio Percentile Premium Principle</td>
<td>C5-38</td>
</tr>
</tbody>
</table>

Exercise 5
Solutions to Exercise 5
C5-40
C5-63

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Net Premium Reserves</th>
<th>C6-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>The Prospective Approach</td>
<td>C6-2</td>
</tr>
<tr>
<td>6.2</td>
<td>The Recursive Approach: Basic Idea</td>
<td>C6-15</td>
</tr>
<tr>
<td>6.3</td>
<td>The Recursive Approach: Further Applications</td>
<td>C6-24</td>
</tr>
</tbody>
</table>

Exercise 6
Solutions to Exercise 6
C6-33
C6-50

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Insurance Models Including Expenses</th>
<th>C7-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Gross Premium</td>
<td>C7-1</td>
</tr>
<tr>
<td>7.2</td>
<td>Gross Premium Reserve</td>
<td>C7-5</td>
</tr>
<tr>
<td>7.3</td>
<td>Expense Reserve and Modified Reserve</td>
<td>C7-13</td>
</tr>
<tr>
<td>7.4</td>
<td>Premium and Reserve Basis</td>
<td>C7-23</td>
</tr>
<tr>
<td>7.5</td>
<td>Actual and Expected Profit</td>
<td>C7-28</td>
</tr>
</tbody>
</table>

Exercise 7
Solutions to Exercise 7
C7-34
C7-52
<table>
<thead>
<tr>
<th>Chapter 8</th>
<th>Multiple Decrement Models: Theory</th>
<th>C8-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Multiple Decrement Table</td>
<td>C8-1</td>
</tr>
<tr>
<td>8.2</td>
<td>Forces of Decrement</td>
<td>C8-5</td>
</tr>
<tr>
<td>8.3</td>
<td>Associated Single Decrement</td>
<td>C8-10</td>
</tr>
<tr>
<td>8.4</td>
<td>Discrete Jumps</td>
<td>C8-22</td>
</tr>
<tr>
<td>Exercise 8</td>
<td></td>
<td>C8-29</td>
</tr>
<tr>
<td>Solutions to Exercise 8</td>
<td></td>
<td>C8-40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Multiple Decrement Models: Applications</th>
<th>C9-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Calculating Actuarial Present Values of Cash Flows</td>
<td>C9-1</td>
</tr>
<tr>
<td>9.2</td>
<td>Calculating Reserve</td>
<td>C9-4</td>
</tr>
<tr>
<td>9.3</td>
<td>Calculating Profit</td>
<td>C9-12</td>
</tr>
<tr>
<td>Exercise 9</td>
<td></td>
<td>C9-18</td>
</tr>
<tr>
<td>Solutions to Exercise 9</td>
<td></td>
<td>C9-26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Multiple State Models</th>
<th>C10-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Discrete-time Markov Chain</td>
<td>C10-4</td>
</tr>
<tr>
<td>10.2</td>
<td>Continuous-time Markov Chain</td>
<td>C10-14</td>
</tr>
<tr>
<td>10.3</td>
<td>Kolmogorov’s Forward Equations</td>
<td>C10-20</td>
</tr>
<tr>
<td>10.4</td>
<td>Calculating Actuarial Present Value of Cash Flows</td>
<td>C10-34</td>
</tr>
<tr>
<td>10.5</td>
<td>Calculating Reserves</td>
<td>C10-43</td>
</tr>
<tr>
<td>Exercise 10</td>
<td></td>
<td>C10-50</td>
</tr>
<tr>
<td>Solutions to Exercise 10</td>
<td></td>
<td>C10-67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>Multiple Life Functions</th>
<th>C11-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Multiple Life Statuses</td>
<td>C11-2</td>
</tr>
<tr>
<td>11.2</td>
<td>Insurances and Annuities</td>
<td>C11-17</td>
</tr>
<tr>
<td>11.3</td>
<td>Dependent Life Models</td>
<td>C11-31</td>
</tr>
<tr>
<td>Exercise 11</td>
<td></td>
<td>C11-44</td>
</tr>
<tr>
<td>Solutions to Exercise 11</td>
<td></td>
<td>C11-64</td>
</tr>
</tbody>
</table>
Chapter 12 Pension Plans and Retirement Benefits

12.1 The Salary Scale Function
12.2 Pension Plans
12.3 Setting the DC Contribution Rate
12.4 DB Plans and Service Table
12.5 Funding of DB Plans
12.6 Retiree Health Benefits

Exercise 12
Solutions to Exercise 12

Chapter 13 Profit Testing

13.1 Profit Vector and Profit Signature
13.2 Profit Measures
13.3 Using Profit Test to Compute Premiums and Reserves

Exercise 13
Solutions to Exercise 13

Chapter 14 Life Table Estimation

14.1 Complete and Grouped Data
14.2 The Kaplan-Meier Estimator
14.3 The Nelson-Aalen Estimator
14.4 Parametric Estimation of Death Probabilities
14.5 Calendar- and Anniversary-based Studies
14.6 Interval-based Study
14.7 Parametric Estimation of Q Matrix

Exercise 14
Solutions to Exercise 14

Chapter 15 Mortality Improvement Modeling

15.1 Some Facts and Jargons
15.2 Mortality Improvement Scales
15.3 Stochastic Mortality Models

Exercise 15
Solutions to Exercise 15
Chapter 16 Health Benefits

16.1 Structured Settlements
16.2 Health Insurance Products
16.3 Modeling Health Insurance Products
16.4 Continuing Care Retirement Communities

Exercise 16
Solutions to Exercise 16

Appendix 1 Numerical Techniques

1.1 Numerical Integration
1.2 Euler’s Method
1.3 Solving Systems of ODEs with Euler’s Method

Appendix 2 Review of Probability

2.1 Probability Laws
2.2 Random Variables and Expectations
2.3 Special Univariate Probability Distributions
2.4 Joint Distribution
2.5 Conditional and Double Expectation
2.6 The Central Limit Theorem

Appendix 3 Illustrative Life Table
Exam LTAM: General Information

Mock Test 1
 Solution

Mock Test 2
 Solution

Mock Test 3
 Solution

Mock Test 4
 Solution

Mock Test 5
 Solution

Mock Test 6
 Solution

Mock Test 7
 Solution

Mock Test 8
 Solution
Suggested Solutions to MLC May 2012 S-1
Suggested Solutions to MLC Nov 2012 S-17
Suggested Solutions to MLC May 2013 S-29
Suggested Solutions to MLC Nov 2013 S-45
Suggested Solutions to MLC April 2014 S-55
Suggested Solutions to MLC Oct 2014 S-69
Suggested Solutions to MLC April 2015 S-81
Suggested Solutions to MLC Oct 2015 S-97
Suggested Solutions to MLC May 2016 S-109
Suggested Solutions to MLC Oct 2016 S-123
Suggested Solutions to MLC April 2017 S-133
Suggested Solutions to MLC Oct 2017 S-145
Suggested Solutions to MLC April 2018 S-157
Suggested Solutions to Sample Structural Questions S-169
Thank you for choosing ACTEX.

In 2018, the SoA launched Exam LTAM (Long-Term Actuarial Mathematics) to replace Exam MLC (Models for Life Contingencies). Compared to its predecessor, Exam LTAM has a much broader coverage. Topics that are newly introduced include the following:

(1) Structural settlement and health insurance

You are required to know the calculations involved in structural settlements, which are often used in settling personal injury claims arising from motor vehicle accidents and medical malpractice. You also need to understand various types of health insurance, and know how to price them using complex multiple-state models.

(2) Mortality modeling

You are required to know several sophisticated mortality models, including the Lee-Carter model, the Cairns-Blake-Dowd model, the CBD M7 model, and MP-2014. You also need to know how to apply them in life insurance pricing and valuation.

(3) Retirement benefits

You are required to know how to value retiree health benefits. Although the set-up covered in Exam LTAM is a “simplified” one, the calculations are still quite involved.

(4) Estimation of life tables

You are required to know how life tables (and multiple state models) are estimated using advanced statistical methods. Previously, in Exam MLC, candidates were required to know how to apply them only.

In this brand new study manual, four chapters (Chapters 12, 14, 15 and 16; 216 pages in total) are written to cover these new (and very advanced) topics, ensuring you are best prepared for the exam! As a fact, one author (Professor Johnny Li) of this study manual has strong expertise in many of these exam topics. Professor Li published some 60 papers on mortality modeling and 2 books on personal injury claims. He also taught mortality modeling in a SoA live webcast. Some of his previous work has been adopted into the SoA’s study note (LTAM-21-18) for this exam.

Exam LTAM has a very unique format. Among all preliminary exams, Exam LTAM is the only one that includes both multiple-choice and written-answer questions. We know very well that you may be worried about written-answer questions. To help you score the highest mark you can in the written-answer section, this manual contains more than 150 written-answer questions for you to practice. Eight full-length mock exams, written in exactly the same format as that announced in the SoA’s Exam LTAM Introductory Note, are also provided. Many of the written-answer questions in this study manual are highly challenging! We are sorry for giving you a hard time, but we do want you to succeed in the real exam.
The learning outcomes stated in the syllabus of Exam LTAM require candidates to be able to interpret a lot of actuarial concepts. This skill is drilled extensively in our practice problems, which often ask you to interpret a certain actuarial formula or to explain your calculation. Also, in Exam LTAM you may be asked to define or describe a certain product, model or terminology. To help you prepare for this type of questions, Chapters 0 and 16 of this study manual provide you summaries of the definitions and descriptions of various products and terminologies. The summaries are written in a “fact sheet” style so that you can remember the key points more easily.

Proofs and derivations are another key challenge. In Exam LTAM, you are highly likely to be asked to prove or derive something. You are expected to know, for example, how to derive the Kolmogorov forward differential equations for a certain transition probability. In this new study manual, we do teach (and drill) you how to prove or derive important formulas. This is in stark contrast to some other exam prep products in which proofs and derivations are downplayed, if not omitted.

Besides the topics specified in the exam syllabus, you also need to know a range of numerical techniques, for example, Euler’s method and Simpson’s rule, in order to succeed. We know that you may not have even seen these techniques before, so we have prepared a special chapter (Appendix 1) to teach you all of the numerical techniques required for Exam LTAM. In addition, whenever a numerical technique is used, we clearly point out which technique it is, letting you follow our examples and exercises more easily.

We have made our best effort to ensure that all topics in the syllabus are explained and practiced in sufficient depth. For your reference, a detailed mapping between this study manual and the readings in the exam syllabus is provided on pages P-11 to P-14.

Other distinguishing features of this study manual include:

− All topics in the newest release (as of June 6, 2018) of LTAM-21-18 “Supplementary Note on Long Term Actuarial Mathematics” are fully incorporated into this study manual.

− We use graphics extensively. Graphical illustrations are probably the most effective way to explain formulas involved in Exam LTAM. The extensive use of graphics can also help you remember various concepts and equations.

− A sleek layout is used. The font size and spacing are chosen to let you feel more comfortable in reading. Important equations are displayed in eye-catching boxes.

− Rather than splitting the manual into tiny units, each of which tells you a couple of formulas only, we have carefully grouped the exam topics into 17 chapters and 3 appendices. Such a grouping allows you to more easily identify the linkages between different concepts, which are essential for your success as multiple learning outcomes can be examined in one single exam question.

− Instead of giving you a long list of formulas, we point out which formulas are the most important. Having read this study manual, you will be able to identify the formulas you must remember and the formulas that are just variants of the key ones.
− We do not want to overwhelm you with verbose explanations. Whenever possible, concepts and techniques are demonstrated with examples and integrated into the practice problems.

− We explain multiple-state models in great depth. A solid understanding of multiple-state models is crucially important, because many of the learning objectives in Exam LTAM are related to multiple-state models.

− We teach you how to make tedious retiree health benefit calculations more manageable by using a tabular approach. Also, whenever possible, multiple methods (direct methods and computationally efficient algorithms) are presented.

− We write practice problems and mock exam questions in a similar format to the released exam questions. This arrangement helps you comprehend questions more quickly in the real exam.

− All mock exams in this study manual are based on the newest set of examination tables (the Standard Ultimate Life Table), so in the real exam, you can retrieve values from these tables more quickly.

On page P-15, you will find a flow chart showing how different chapters of this manual are connected to one another. You should first study Chapters 0 to 10 in order. Chapter 0 will give you some background factual information; Chapters 1 to 4 will build you a solid foundation; and Chapters 5 to 10 will get you to the core of the exam. You should then study Chapters 11 to 16 in any order you wish. Immediately after reading a chapter, do all practice problems we provide for that chapter. Make sure that you understand every single practice problem. Finally, work on the mock exams.

Before you begin your study, please download the exam syllabus from the SoA’s website:

On the last page of the exam syllabus, you will find a link to Exam LTAM Tables, which are frequently used in the exam. You should keep a copy of the tables, as we are going to refer to them from time to time. You should also check the exam home page periodically for updates, corrections or notices.

If you find a possible error in this manual, please let us know at the “Customer Feedback” link on the ACTEX homepage (www.actexmadriver.com). Any confirmed errata will be posted on the ACTEX website under the “Errata & Updates” link.

Enjoy your study!
Syllabus Reference

<table>
<thead>
<tr>
<th>Our Manual</th>
<th>AMLCR / SN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 0: Some Factual Information</td>
<td></td>
</tr>
<tr>
<td>0.1 – 0.6</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 1: Survival Distributions</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>2.1, 2.2</td>
</tr>
<tr>
<td>1.2</td>
<td>2.2</td>
</tr>
<tr>
<td>1.3</td>
<td>2.4</td>
</tr>
<tr>
<td>1.4</td>
<td>2.6</td>
</tr>
<tr>
<td>1.5</td>
<td>2.3</td>
</tr>
<tr>
<td>Chapter 2: Life Tables</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>3.1, 3.2</td>
</tr>
<tr>
<td>2.2</td>
<td>3.3</td>
</tr>
<tr>
<td>2.3</td>
<td>3.7, 3.8, 3.9</td>
</tr>
<tr>
<td>2.4</td>
<td>2.5, 2.6</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Chapter 3: Life Insurances</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>4.4.1, 4.4.5, 4.4.7, 4.6</td>
</tr>
<tr>
<td>3.2</td>
<td>4.4.2, 4.4.6, 4.4.7, 4.6</td>
</tr>
<tr>
<td>3.3</td>
<td>4.4.3</td>
</tr>
<tr>
<td>3.4</td>
<td>4.4.8, 4.5</td>
</tr>
<tr>
<td>3.5</td>
<td>4.4.4</td>
</tr>
<tr>
<td>3.6</td>
<td>4.5</td>
</tr>
<tr>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Chapter 4: Life Annuities</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>5.5</td>
</tr>
<tr>
<td>4.2</td>
<td>5.4.1, 5.4.2, 5.9, 5.10</td>
</tr>
<tr>
<td>4.3</td>
<td>5.4.3, 5.4.4</td>
</tr>
<tr>
<td>4.4</td>
<td>5.6</td>
</tr>
<tr>
<td>4.5</td>
<td>5.8</td>
</tr>
<tr>
<td>4.6</td>
<td>5.11.1</td>
</tr>
<tr>
<td>4.7</td>
<td>5.11.2, 5.11.3</td>
</tr>
<tr>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Our Manual</td>
<td>AMLCR / SN</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Chapter 5: Premium Calculation</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>6.1, 6.2</td>
</tr>
<tr>
<td>5.2</td>
<td>6.5</td>
</tr>
<tr>
<td>5.3</td>
<td>6.5</td>
</tr>
<tr>
<td>5.4</td>
<td>6.4</td>
</tr>
<tr>
<td>5.5</td>
<td>6.7</td>
</tr>
<tr>
<td>5.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Chapter 6: Net Premium Reserves</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>7.1, 7.3.1, 7.8</td>
</tr>
<tr>
<td>6.2</td>
<td>7.3.3</td>
</tr>
<tr>
<td>6.3</td>
<td>7.4</td>
</tr>
<tr>
<td>Chapter 7: Insurance Models Including Expenses</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>6.6</td>
</tr>
<tr>
<td>7.2</td>
<td>7.3.2, 7.5</td>
</tr>
<tr>
<td>7.3</td>
<td>7.9</td>
</tr>
<tr>
<td>7.4</td>
<td>6.7, 7.3.4</td>
</tr>
<tr>
<td>7.5</td>
<td>7.3.4</td>
</tr>
<tr>
<td>Chapter 8: Multiple Decrement Models: Theory</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>8.8</td>
</tr>
<tr>
<td>8.2</td>
<td>8.8, 8.9</td>
</tr>
<tr>
<td>8.3</td>
<td>8.8, 8.10</td>
</tr>
<tr>
<td>8.4</td>
<td>8.12</td>
</tr>
<tr>
<td>Chapter 9: Multiple Decrement Models: Applications</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>LTAM-21-18 Sec 3</td>
</tr>
<tr>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>Chapter 10: Multiple State Models</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>8.13, LTAM-21-18 Sec 3</td>
</tr>
<tr>
<td>10.2</td>
<td>8.2, 8.3, 8.11</td>
</tr>
<tr>
<td>10.3</td>
<td>8.4, 8.5</td>
</tr>
<tr>
<td>10.4</td>
<td>8.6</td>
</tr>
<tr>
<td>10.5</td>
<td>8.7, LTAM-21-18 Sec 3</td>
</tr>
<tr>
<td>Chapter 11: Multiple Life Functions</td>
<td>AMLCR / SN</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>11.1</td>
<td>9.2 to 9.4</td>
</tr>
<tr>
<td>11.2</td>
<td>9.2 to 9.4</td>
</tr>
<tr>
<td>11.3</td>
<td>9.5 to 9.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 12: Pension Plans and Retirement Benefits</th>
<th>AMLCR / SN</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>10.3</td>
</tr>
<tr>
<td>12.2</td>
<td>10.1, 10.2</td>
</tr>
<tr>
<td>12.3</td>
<td>10.4</td>
</tr>
<tr>
<td>12.4</td>
<td>10.5, 10.6</td>
</tr>
<tr>
<td>12.5</td>
<td>10.5, 10.6</td>
</tr>
<tr>
<td>12.6</td>
<td>LTAM-21-18 Sec 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13: Profit Testing</th>
<th>AMLCR / SN</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>12.2 to 12.4</td>
</tr>
<tr>
<td>13.2</td>
<td>12.5</td>
</tr>
<tr>
<td>13.3</td>
<td>12.6, 12.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 14: Life Table Estimation</th>
<th>AMLCR / SN</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>LTAM-22-18 12.1, 12.2</td>
</tr>
<tr>
<td>14.2</td>
<td>LTAM-22-18 12.3, 12.5</td>
</tr>
<tr>
<td>14.3</td>
<td>LTAM-22-18 12.3, 12.5</td>
</tr>
<tr>
<td>14.4</td>
<td>LTAM-22-18 12.8</td>
</tr>
<tr>
<td>14.5</td>
<td>LTAM-22-18 12.7</td>
</tr>
<tr>
<td>14.6</td>
<td>LTAM-22-18 12.7</td>
</tr>
<tr>
<td>14.7</td>
<td>LTAM-22-18 12.9</td>
</tr>
<tr>
<td>Our Manual</td>
<td>AMLCR / SN</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Chapter 15: Mortality Improvement Modeling</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>LTAM-21-18 Sec 4.1</td>
</tr>
<tr>
<td>15.2</td>
<td>LTAM-21-18 Sec 4.2</td>
</tr>
<tr>
<td>15.3</td>
<td>LTAM-21-18 Sec 4.3</td>
</tr>
<tr>
<td>Chapter 16: Health Benefits</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>LTAM-21-18 Sec 5</td>
</tr>
<tr>
<td>16.2</td>
<td>LTAM-21-18 Sec 1 (except 1.6)</td>
</tr>
<tr>
<td>16.3</td>
<td>LTAM-21-18 Sec 2 (except 2.4)</td>
</tr>
<tr>
<td>16.4</td>
<td>LTAM-21-18 Sec 1.6, 2.4</td>
</tr>
<tr>
<td>Appendix 1: Numerical Techniques</td>
<td></td>
</tr>
<tr>
<td>A1.1</td>
<td>8.6</td>
</tr>
<tr>
<td>A1.2</td>
<td>7.5.2</td>
</tr>
<tr>
<td>A1.3</td>
<td>7.5.2</td>
</tr>
</tbody>
</table>
Flow Chart

0. Some Factual Information

1. Survival Distributions

2. Life Tables

3. Life Insurances

4. Life Annuities

5. Premium Calculation

6. Net Premium Reserves

7. Insurance Models Including Expenses

8. Multiple Decrement Models: Theory

9. Multiple Decrement Models: Applications

10. Multiple State Models

11. Multiple Life Functions

12. Pension Plans and Retirement Benefits

13. Profit Testing

14. Life Table Estimation

15. Mortality Improvement Modeling

16. Health Benefits
This chapter serves as a summary of Chapter 1 in AMLCR. It contains descriptions of various life insurance products and pension plans. There is absolutely no mathematics in this chapter.

You should know (and remember) the information presented in this chapter, because in the written answer questions, you may be asked to define or describe a certain pension plan or life insurance policy. Most of the materials in this chapter are presented in a “fact sheet” style so that you can remember the key points more easily.

Many of the policies and plans mentioned in this chapter will be discussed in detail in later parts of this study guide.

0.1 Traditional Life Insurance Contracts

Whole life insurance
A whole life insurance pays a benefit on the death of the policyholder whenever it occurs. The following diagram illustrates a whole life insurance sold to a person age x.

```
0 (Age $x$)  --------------------------------------  Time from now
Death occurs
```

A benefit (the sum insured) is paid here.

The amount of benefit is often referred to as the *sum insured*. The policyholder, of course, has to pay the “price” of policy. In insurance context, the “price” of a policy is called the *premium*, which may be payable at the beginning of the policy, or periodically throughout the life time of the policy.
Term life insurance
A term life insurance pays a benefit on the death of the policyholder, provided that death occurs before the end of a specified term.

![Diagram of term life insurance]

The time point n in the diagram is called the *term* or the *maturity date* of the policy.

Endowment insurance
An endowment insurance offers a benefit paid either on the death of the policyholder or at the end of a specified term, whichever occurs earlier.

![Diagram of endowment insurance]

These three types of traditional life insurance will be discussed in Chapter 3 of this study guide.

Participating (with profit) insurance
Any premium collected from the policyholder will be invested, for example, in the bond market. In a participating insurance, the profits earned on the invested premiums are shared with the policyholder. The profit share can take different forms, for example, cash dividends, reduced premiums or increased sum insured. You need not know the detail of this product.
0.2 Modern Life Insurance Contracts

Modern life insurance products are usually more flexible and often involve an investment component. The table below summarizes the features of several modern life insurance products.

<table>
<thead>
<tr>
<th>Product</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal life insurance</td>
<td>- Combines investment and life insurance</td>
</tr>
<tr>
<td></td>
<td>- Premiums are flexible, as long as the accumulated value of the premiums is enough to cover the cost of insurance</td>
</tr>
<tr>
<td>Unitized with-profit insurance</td>
<td>- Similar to traditional participating insurance</td>
</tr>
<tr>
<td></td>
<td>- Premiums are used to purchase shares of an investment fund</td>
</tr>
<tr>
<td></td>
<td>- The income from the investment fund increases the sum insured.</td>
</tr>
<tr>
<td>Equity-linked insurance</td>
<td>- The benefit is linked to the performance of an investment fund.</td>
</tr>
<tr>
<td></td>
<td>- Examples: equity-indexed annuities (EIA), unit-linked policies,</td>
</tr>
<tr>
<td></td>
<td>segregated fund policies, variable annuity contracts</td>
</tr>
<tr>
<td></td>
<td>- Usually, investment guarantees are provided.</td>
</tr>
</tbody>
</table>

We will not discuss these policies in detail because it is out of the scope of this exam.

0.3 Underwriting

Underwriting refers to the process of collecting and evaluating information such as age, gender, smoking habits, occupation and health history. The purposes of this process are:

- To classify potential policyholders into broadly homogeneous risk categories
- To determine if additional premium has to be charged.

The following table summarizes a typical categorization of potential policyholders.
Chapter 0: Some Factual Information

<table>
<thead>
<tr>
<th>Category</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred lives</td>
<td>Have very low mortality risk</td>
</tr>
<tr>
<td>Normal lives</td>
<td>Have some risk but no additional premium has to be charged</td>
</tr>
<tr>
<td>Rated lives</td>
<td>Have more risk and additional premium has to be charged</td>
</tr>
<tr>
<td>Uninsurable lives</td>
<td>Have too much risk and therefore not insurable</td>
</tr>
</tbody>
</table>

Underwriting is an important process, because with no (or insufficient) underwriting, there is a risk of adverse selection; that is, the insurance products tend to attract high risk individuals, leading to excessive claims. In Chapter 2, we will introduce the select-and-ultimate table, which is closely related to underwriting.

0.4 Life Annuities

A life annuity is a benefit in the form of a regular series of payments, conditional on the survival of the policyholder. There are different types of life annuities.

Single premium immediate annuity (SPIA)

The annuity benefit of a SPIA commences as soon as the contract is written. The policyholder pays a single premium at the beginning of the contract.

![Diagram of SPIA]

- Annuity benefits are paid
- 0 (Age x)
- A single premium is paid at the beginning of the contract
- Time from now
- Death occurs
Single premium deferred annuity (SPDA)

The annuity benefit of a SPDA commences at some future specified date (say \(n \) years from now). The policyholder pays a single premium at the beginning of the contract.

![Diagram of SPDA]

A single premium is paid at the beginning of the contract.

Regular Premium Deferred Annuity (RPDA)

An RPDA is identical to a SPDA except that the premiums are paid periodically over the deferred period (i.e., before time \(n \)).

These three annuity types will be discussed in greater depth in Chapter 4 of this study guide.

Some life annuities are issued to two lives (a husband and wife). These life annuities can be classified as follows.

<table>
<thead>
<tr>
<th>Joint life annuity</th>
<th>The annuity benefit ceases on the first death of the couple.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last survivor annuity</td>
<td>The annuity benefit ceases on the second death of the couple.</td>
</tr>
<tr>
<td>Reversionary annuity</td>
<td>The annuity benefit begins on the first death of the couple, and ceases on the second death.</td>
</tr>
</tbody>
</table>

These annuities will be discussed in detail in Chapter 11 of this study guide.
A pension provides a lump sum and/or annuity benefit upon an employee’s retirement. In the following table, we summarize a typical classification of pension plans:

<table>
<thead>
<tr>
<th>Defined contribution (DC) plans</th>
<th>The retirement benefit from a DC plan depends on the accumulation of the deposits made by the employer and employee over the employee’s working life time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined benefit (DB) plans</td>
<td>The retirement benefit from a DB plan depends on the employee’s service and salary.</td>
</tr>
<tr>
<td></td>
<td>Final salary plan: the benefit is a function of the employee’s final salary.</td>
</tr>
<tr>
<td></td>
<td>Career average plan: the benefit is a function of the average salary over the employee’s entire career in the company.</td>
</tr>
</tbody>
</table>

Pension plans will be discussed in detail in Chapter 12 of this study guide.

Chapter 1: Survival Distributions

Objectives

1. To define future lifetime random variables
2. To specify survival functions for future lifetime random variables
3. To define actuarial symbols for death and survival probabilities and develop relationships between them
4. To define the force of mortality

In Exam FM, you valued cash flows that are paid at some known future times. In Exam LTAM, by contrast, you are going to value cash flows that are paid at some unknown future times. Specifically, the timings of the cash flows are dependent on the future lifetime of the underlying individual. These cash flows are called life contingent cash flows, and the study of these cash flows is called life contingencies.

It is obvious that an important part of life contingencies is the modeling of future lifetimes. In this chapter, we are going to study how we can model future lifetimes as random variables. A few simple probability concepts you learnt in Exam P will be used.

1.1 Age-at-death Random Variable

Let us begin with the age-at-death random variable, which is denoted by T_0. The definition of T_0 can be easily seen from the diagram below.
The age-at-death random variable can take any value within $[0, \infty)$. Sometimes, we assume that no individual can live beyond a certain very high age. We call that age the limiting age, and denote it by ω. If a limiting age is assumed, then T_0 can only take a value within $[0, \omega]$.

We regard T_0 as a continuous random variable, because it can, in principle, take any value on the interval $[0, \infty)$ if there is no limiting age or $[0, \omega]$ if a limiting age is assumed. Of course, to model T_0, we need a probability distribution. The following notation is used throughout this study guide (and in the examination).

- $F_0(t) = \Pr(T_0 \leq t)$ is the (cumulative) distribution function of T_0.
- $f_0(t) = \frac{d}{dt} F_0(t)$ is the probability density function of T_0. For a small interval Δt, the product $f_0(t)\Delta t$ is the (approximate) probability that the age at death is in between t and $t + \Delta t$.

In life contingencies, we often need to calculate the probability that an individual will survive to a certain age. This motivates us to define the survival function:

$$S_0(t) = \Pr(T_0 > t) = 1 - F_0(t).$$

Note that the subscript “0” indicates that these functions are specified for the age-at-death random variable (or equivalently, the future lifetime of a person age 0 now).

Not all functions can be regarded as survival functions. A survival function must satisfy the following requirements:

1. $S_0(0) = 1$. This means every individual can live at least 0 years.
2. $S_0(\omega) = 0$ or $\lim_{t \to \omega} S_0(t) = 0$. This means that every individual must die eventually.
3. $S_0(t)$ is monotonically decreasing. This means that, for example, the probability of surviving to age 80 cannot be greater than that of surviving to age 70.
Chapter 1: Survival Distributions

Summing up, \(f_0(t) \), \(F_0(t) \) and \(S_0(t) \) are related to one another as follows.

\[
\begin{align*}
\text{Relations between } f_0(t), \quad F_0(t) \quad \text{and } S_0(t) \\
f_0(t) &= \frac{d}{dt} F_0(t) = -\frac{d}{dt} S_0(t), \quad (1.1) \\
S_0(t) &= \int_{\infty}^{\infty} f_0(u)du = 1 - \int_{0}^{t} f_0(u)du = 1 - F_0(t), \quad (1.2) \\
\Pr(a < T_0 \leq b) &= \int_{a}^{b} f_0(u)du = F_0(b) - F_0(a) = S_0(a) - S_0(b). \quad (1.3)
\end{align*}
\]

Note that because \(T_0 \) is a continuous random variable, \(\Pr(T_0 = c) = 0 \) for any constant \(c \). Now, let us consider the following example.

Example 1.1 [Structural Question]

You are given that \(S_0(t) = 1 - t/100 \) for \(0 \leq t \leq 100 \).

(a) Verify that \(S_0(t) \) is a valid survival function.

(b) Find expressions for \(F_0(t) \) and \(f_0(t) \).

(c) Calculate the probability that \(T_0 \) is greater than 30 and smaller than 60.

Solution

(a) First, we have \(S_0(0) = 1 - 0/100 = 1 \).

Second, we have \(S_0(100) = 1 - 100/100 = 0 \).

Third, the first derivative of \(S_0(t) \) is \(-1/100\), indicating that \(S_0(t) \) is non-increasing. Hence, \(S_0(t) \) is a valid survival function.

(b) We have \(F_0(t) = 1 - S_0(t) = t/100, \) for \(0 \leq t \leq 100 \).

Also, we have and \(f_0(t) = \frac{d}{dt} F_0(t) = 1/100, \) for \(0 \leq t \leq 100 \).

(c) \(\Pr(30 < T_0 < 60) = S_0(30) - S_0(60) = (1 - 30/100) - (1 - 60/100) = 0.3 \).

[END]
1.2 Future Lifetime Random Variable

Consider an individual who is age x now. Throughout this text, we use (x) to represent such an individual. Instead of the entire lifetime of (x), we are often more interested in the future lifetime of (x). We use T_x to denote the future lifetime random variable for (x). The definition of T_x can be easily seen from the diagram below.

![Diagram of future lifetime random variable]

[Note: For brevity, we may only display the portion starting from age x (i.e., time 0) in future illustrations.]

If there is no limiting age, T_x can take any value within $[0, \infty)$. If a limiting age is assumed, then T_x can only take a value within $[0, \omega - x]$. We have to subtract x because the individual has attained age x at time 0 already.

We let $S_x(t)$ be the survival function for the future lifetime random variable. The subscript “x” here indicates that the survival function is defined for a life who is age x now. It is important to understand that when modeling the future lifetime of (x), we always know that the individual is alive at age x. Thus, we may evaluate $S_x(t)$ as a conditional probability:

$$S_x(t) = \Pr(T_x > t) = \Pr(T_0 > x + t | T_0 > x)$$

$$= \frac{\Pr(T_0 > x + t \cap T_0 > x)}{\Pr(T_0 > x)} = \frac{\Pr(T_0 > x + t)}{\Pr(T_0 > x)} = \frac{S_0(x + t)}{S_0(x)}.$$

The third step above follows from the equation $\Pr(A | B) = \frac{\Pr(A \cap B)}{\Pr(B)}$, which you learnt in Exam P.
Chapter 1: Survival Distributions

Survival Function for the Future Lifetime Random Variable

\[S_x(t) = \frac{S_0(x+t)}{S_0(x)} \] \hspace{1cm} (1.4)

With \(S_x(t) \), we can obtain \(F_x(t) \) and \(f_x(t) \) by using

\[F_x(t) = 1 - S_x(t) \quad \text{and} \quad f_x(t) = \frac{d}{dt} F_x(t), \]

respectively.

Example 1.2 [Structural Question]

You are given that \(S_0(t) = 1 - t/100 \) for \(0 \leq t \leq 100 \).

(a) Find expressions for \(S_{10}(t) \), \(F_{10}(t) \) and \(f_{10}(t) \).

(b) Calculate the probability that an individual age 10 now can survive to age 25.

(c) Calculate the probability that an individual age 10 now will die within 15 years.

Solution

(a) In this part, we are asked to calculate functions for an individual age 10 now (i.e., \(x = 10 \)).

Here, \(\omega = 100 \) and therefore these functions are defined for \(0 \leq t \leq 90 \) only.

First, we have

\[S_{10}(t) = \frac{S_0(10+t)}{S_0(10)} = \frac{1-(10+t)/100}{1-10/100} = 1 - \frac{t}{90}, \text{ for } 0 \leq t \leq 90. \]

Second, we have

\[F_{10}(t) = 1 - S_{10}(t) = t/90, \text{ for } 0 \leq t \leq 90. \]

Finally, we have

\[f_{10}(t) = \frac{d}{dt} F_{10}(t) = \frac{1}{90}. \]

(b) The probability that an individual age 10 now can survive to age 25 is given by

\[\Pr(T_{10} > 15) = S_{10}(15) = 1 - \frac{15}{90} = \frac{5}{6}. \]

(c) The probability that an individual age 10 now will die within 15 years is given by

\[\Pr(T_{10} \leq 15) = F_{10}(15) = 1 - S_{10}(15) = \frac{1}{6}. \]
For convenience, we have designated actuarial notation for various types of death and survival probabilities.

Notation 1: \(t p_x \)

We use \(t p_x \) to denote the probability that a life age \(x \) now survives to \(t \) years from now. By definition, we have

\[
 t p_x = \Pr(T_x > t) = S_x(t).
\]

When \(t = 1 \), we can omit the subscript on the left-hand-side; that is, we write \(1 p_x \) as \(p_x \).

Notation 2: \(t q_x \)

We use \(t q_x \) to denote the probability that a life age \(x \) now dies before attaining age \(x + t \). By definition, we have

\[
 t q_x = \Pr(T_x \leq t) = F_x(t).
\]

When \(t = 1 \), we can omit the subscript on the left-hand-side; that is, we write \(1 q_x \) as \(q_x \).

Notation 3: \(t |u q_x \)

We use \(t |u q_x \) to denote the probability that a life age \(x \) now dies between ages \(x + t \) and \(x + t + u \). By definition, we have

\[
 t |u q_x = \Pr(t < T_x \leq t + u) = F_x(t + u) - F_x(t) = S_x(t) - S_x(t + u).
\]

When \(u = 1 \), we can omit the subscript \(u \); that is, we write \(t |1 q_x \) as \(t |q_x \).

Note that when we describe survival distributions, “\(p \)” always means a survival probability, while “\(q \)” always means a death probability. The “\(| \)” between \(t \) and \(u \) means that the death probability is deferred by \(t \) years. We read “\(t \ | \ u \)” as “\(t \) deferred \(u \)”. It is important to remember the meanings of these three actuarial symbols. Let us study the following example.
Chapter 1: Survival Distributions

Express the probabilities associated with the following events in actuarial notation.
(a) A new born infant dies no later than age 45.
(b) A person age 20 now survives to age 38.
(c) A person age 57 now survives to age 60 but dies before attaining age 65.

Assuming that $S_0(t) = e^{-0.0125t}$ for $t \geq 0$, evaluate the probabilities.

Solution

(a) The probability that a new born infant dies no later than age 45 can be expressed as $45q_0$. [Here we have “q” for a death probability, $x = 0$ and $t = 45$.]

Further, $45q_0 = F_0(45) = 1 - S_0(45) = 0.4302$.

(b) The probability that a person age 20 now survives to age 38 can be expressed as $18p_{20}$. [Here we have “p” for a survival probability, $x = 20$ and $t = 38 - 20 = 18$.]

Further, we have $18p_{20} = S_{20}(18) = \frac{S_0(38)}{S_0(20)} = 0.7985$.

(c) The probability that a person age 57 now survives to age 60 but dies before attaining age 65 can be expressed as $35q_{57}$. [Here, we have “q” for a (deferred) death probability, $x = 57$, $t = 60 - 57 = 3$, and $u = 65 - 60 = 5$.]

Further, we have $35q_{57} = S_{57}(3) - S_{57}(8) = \frac{S_0(60)}{S_0(57)} - \frac{S_0(65)}{S_0(57)} = 0.058357$.

[END]

Other than their meanings, you also need to know how these symbols are related to one another. Here are four equations that you will find very useful.

Equation 1: $tq_x + tq_x = 1$

This equation arises from the fact that there are only two possible outcomes: dying within t years or surviving to t years from now.
Equation 2: \(t^+ u p_x = t p_x \times u p_{x+t} \)

The meaning of this equation can be seen from the following diagram.

![Diagram showing survival distributions](image)

Mathematically, we can prove this equation as follows:

\[
\begin{align*}
 t^+ u p_x &= S_x(t+u) = \frac{S_0(x+t+u)}{S_0(x)} = \frac{S_0(x+t)}{S_0(x)} = S_x(t)S_{x+u}(u) = t p_x \times u p_{x+t}.
\end{align*}
\]

Equation 3: \(t^+ u q_x = t^+ u q_x - t q_x = t p_x - t^+ u p_x \)

This equation arises naturally from the definition of \(t^+ u q_x \).

We have \(t^+ u q_x = \Pr(t < T_x \leq t + u) = F_x(t + u) - F_x(t) = t^+ u q_x = t^+ u q_x - t q_x \).

Also, \(t^+ u q_x = \Pr(t < T_x \leq t + u) = S_x(t) - S_x(t + u) = t p_x - t^+ u p_x \).

Equation 4: \(t^+ u q_x = t p_x \times u q_{x+t} \)

The reasoning behind this equation can be understood from the following diagram:
Mathematically, we can prove this equation as follows:

\[tp_x + tq_x = 1, \] \hspace{1cm} (from Equation 3)

\[tp_x = tp_x \times up_{x+t} \] \hspace{1cm} (from Equation 2)

\[= tp_x (1 - up_{x+t}) \]

\[= tp_x \times up_{x+t} \] \hspace{1cm} (from Equation 1)

Here is a summary of the equations that we just introduced.

\[
\begin{align*}
\text{Relations between } & t p_x, t q_x \text{ and } v_u q_x \\
& t p_x + t q_x = 1, \hspace{1cm} \text{(1.5)} \\
& t + u p_x = t p_x \times u p_{x+t}, \hspace{1cm} \text{(1.6)} \\
& v_u q_x = t + u q_x - t q_x = t p_x - t + u p_x = t p_x \times u q_{x+t}. \hspace{1cm} \text{(1.7)}
\end{align*}
\]

Let us go through the following example to see how these equations are applied.

Example 1.4

You are given:

(i) \(p_x = 0.99 \)

(ii) \(p_{x+1} = 0.985 \)

(iii) \(3p_{x+1} = 0.95 \)

(iv) \(q_{x+3} = 0.02 \)

Calculate the following:

(a) \(p_{x+3} \)

(b) \(2p_x \)

(c) \(2p_{x+1} \)

(d) \(3p_x \)

(e) \(\frac{1}{2} q_x \)
1.4 Curtate Future Lifetime Random Variable

In practice, actuaries use Excel extensively, so a discrete version of the future lifetime random variable would be easier to work with. We define

$$K_x = \lfloor T_x \rfloor,$$

where $\lfloor y \rfloor$ means the integral part of y. For example, $\lfloor 1 \rfloor = 1$, $\lfloor 4.3 \rfloor = 4$ and $\lfloor 10.99 \rfloor = 10$. We call K_x the curtate future lifetime random variable.

It is obvious that K_x is a discrete random variable, since it can only take non-negative integral values (i.e., 0, 1, 2, ...). The probability mass function for K_x can be derived as follows:

$$\Pr(K_x = 0) = \Pr(0 \leq T_x < 1) = q_x,$$
$$\Pr(K_x = 1) = \Pr(1 \leq T_x < 2) = 1|q_x,$$
$$\Pr(K_x = 2) = \Pr(2 \leq T_x < 3) = 2|q_x, \ldots$$
Inductively, we have

\[Pr(K_x = k) = k! q_x, \quad k = 0, 1, 2, \ldots \]

The cumulative distribution function can be derived as follows:

\[Pr(K_x \leq k) = Pr(T_x < k + 1) = k+1 q_x, \quad \text{for} \quad k = 0, 1, 2, \ldots . \]

It is just that simple! Now, let us study the following example, which is taken from a previous SoA Exam.

Example 1.5 [Course 3 Fall 2003 #28]

For \((x)\):

(i) \(K \) is the curtate future lifetime random variable.

(ii) \(q_{x+k} = 0.1(k + 1), \quad k = 0, 1, 2, \ldots, 9 \)

Calculate \(\text{Var}(K \land 3) \).

(A) 1.1 (B) 1.2 (C) 1.3 (D) 1.4 (E) 1.5

Solution

The notation \(\land \) means “minimum”. So here \(K \land 3 \) means \(\text{min}(K, 3) \). For convenience, we let \(W = \text{min}(K, 3) \). Our job is to calculate \(\text{Var}(W) \). Note that the only possible values that \(W \) can take are 0, 1, 2, and 3.

To accomplish our goal, we need the probability function of \(W \), which is related to that of \(K \). The probability function of \(W \) is derived as follows:

\[Pr(W = 0) = Pr(K = 0) = q_x = 0.1 \]

\[Pr(W = 1) = Pr(K = 1) = \frac{1}{2} q_x = p_x \times q_{x+1} \]
\[
(1 - q_x)q_{x+1} = (1 - 0.1) \times 0.2 = 0.18
\]

\[Pr(W = 2) = Pr(K = 2) = 2q_x\]

\[= 2p_x \times q_{x+2} = p_x \times p_{x+1} \times q_{x+2} = (1 - q_x)(1 - q_{x+1}) \times q_{x+2} = 0.9 \times 0.8 \times 0.3 = 0.216\]

\[Pr(W = 3) = Pr(K \geq 3) = 1 - Pr(K = 0) - Pr(K = 1) - Pr(K = 2) = 0.504.\]

From the probability function for \(W\), we obtain \(E(W)\) and \(E(W^2)\) as follows:

\[E(W) = 0 \times 0.1 + 1 \times 0.18 + 2 \times 0.216 + 3 \times 0.504 = 2.124\]

\[E(W^2) = 0^2 \times 0.1 + 1^2 \times 0.18 + 2^2 \times 0.216 + 3^2 \times 0.504 = 5.58\]

This gives \(Var(W) = E(W^2) - [E(W)]^2 = 5.58 - 2.124^2 = 1.07\). Hence, the answer is (A).

1.5 Force of Mortality

In Exam FM, you learnt a concept called the force of interest, which measures the amount of interest credited in a very small time interval. By using this concept, you valued, for example, annuities that make payouts continuously. In this exam, you will encounter continuous life contingent cash flows. To value such cash flows, you need a function that measures the probability of death over a very small time interval. This function is called the force of mortality.

Consider an individual age \(x\) now. The force of mortality for this individual \(t\) years from now is denoted by \(\mu_{x+t}\) or \(\mu_x(t)\). At time \(t\), the (approximate) probability that this individual dies within a very small period of time \(\Delta t\) is \(\mu_{x+t}\Delta t\). The definition of \(\mu_{x+t}\) can be seen from the following diagram.
From the diagram, we can also tell that \(f_x(t) \Delta t = S_x(t) \mu \Delta t \). It follows that
\[
f_x(t) = S_x(t) \mu = \mu_x \Delta t.
\]
This is an extremely important relation, which will be used throughout this study manual.

Recall that \(f_x(t) = F_x'(t) = -S_x'(t) \). This yields the following equation:
\[
\mu_x = \frac{S_x'(t)}{S_x(t)},
\]
which allows us to find the force of mortality when the survival function is known.

Recall that \(\frac{d \ln x}{dx} = \frac{1}{x} \), and that by chain rule, \(\frac{d \ln g(x)}{dx} = \frac{g'(x)}{g(x)} \) for a real-valued function \(g \). We can rewrite the previous equation as follows:
\[
\mu_x = \frac{S_x'(t)}{S_x(t)} = -\frac{d[\ln S_x(t)]}{dt} = -\mu_x dt = d[\ln S_x(t)].
\]
Replacing \(t \) by \(u \),
\[
-\mu_u du = d[\ln S_x(u)]
\]
\[
\int_0^t \mu_u du = \int_0^t d[\ln S_x(u)]
\]
\[
\int_0^t \mu_u du = \ln S_x(t) - \ln S_x(0)
\]
\[
S_x(t) = \exp \left(-\int_0^t \mu_u du \right).
\]
This allows us to find the survival function when the force of mortality is known.
Not all functions can be used for the force of mortality. We require the force of mortality to satisfy the following two criteria:

(i) \(\mu_{x+t} \geq 0 \) for all \(x \geq 0 \) and \(t \geq 0 \).

(ii) \(\int_0^\infty \mu_{x+t} \, dt = \infty \).

Criterion (i) follows from the fact that \(\mu_{x+t} \Delta t \) is a measure of probability, while Criterion (ii) follows from the fact that \(\lim_{t \to \infty} S_x(t) = 0 \).

Note that the subscript \(x+t \) indicates the age at which death occurs. So you may use \(\mu_x \) to denote the force of mortality at age \(x \). For example, \(\mu_{20} \) refers to the force of mortality at age 20. The two criteria above can then be written alternatively as follows:

(i) \(\mu_x \geq 0 \) for all \(x \geq 0 \).

(ii) \(\int_0^\infty \mu_x \, dx = \infty \).

The following two specifications of the force of mortality are often used in practice.

Gompertz’ law

\[\mu_x = B e^x \]

Makeham’s law

\[\mu_x = A + B e^x \]

In the above, \(A, B \) and \(c \) are constants such that \(A \geq -B, B > 0 \) and \(c > 1 \).
Let us study a few examples now.

Example 1.6 [Structural Question]

For a life age \(x \) now, you are given that \(S_x(t) = \frac{(10-t)^2}{100} \) for \(0 \leq t < 10 \).

(a) Find \(\mu_{x+t} \).
(b) Find \(f_x(t) \).

Solution

(a) \(\mu_{x+t} = -\frac{S'_x(t)}{S_x(t)} = -\frac{2(10-t)}{100} = \frac{2}{10-t} \).

(b) You may work directly from \(S_x(t) \), but since we have found \(\mu_{x+t} \) already, it would be quicker to find \(f_x(t) \) as follows:

\[
f_x(t) = S_x(t)\mu_{x+t} = \frac{(10-t)^2}{100} \times \frac{2}{10-t} = \frac{10-t}{50}.\]

[END]

Example 1.7 [Structural Question]

For a life age \(x \) now, you are given

\[\mu_{x+t} = 0.002t, \quad t \geq 0. \]

(a) Is \(\mu_{x+t} \) a valid function for the force of mortality of \((x) \)?
(b) Find \(S_x(t) \).
(c) Find \(f_x(t) \).

Solution

(a) First, it is obvious that \(\mu_{x+t} \geq 0 \) for all \(x \) and \(t \).

Second, \(\int_0^\infty \mu_{x+t} \, du = \int_0^\infty 0.002u \, du = 0.001u^2 \bigg|_0^\infty = \infty \).

Hence, it is a valid function for the force of mortality of \((x) \).
(b) \(S_x(t) = \exp\left(-\int_0^t \mu_{x+u} du\right) = \exp\left(-\int_0^t 0.002u du\right) = \exp(-0.001t^2). \)

(c) \(f_x(t) = S_x(t)\mu_{x+t} = 0.002t\exp(-0.001t^2). \)

You are given:

(i) \(R = 1 - \exp\left(-\int_0^1 \mu_{x+t} dt\right) \)

(ii) \(S = 1 - \exp\left(-\int_0^1 (\mu_{x+t} + k) dt\right) \)

(iii) \(k \) is a constant such that \(S = 0.75R. \)

Determine an expression for \(k. \)

(A) \(\ln\left((1-q_x)/(1-0.75q_x)\right) \)

(B) \(\ln\left((1-0.75q_x)/(1-p_x)\right) \)

(C) \(\ln\left((1-0.75p_x)/(1-p_x)\right) \)

(D) \(\ln\left((1-p_x)/(1-0.75q_x)\right) \)

(E) \(\ln\left((1-0.75q_x)/(1-q_x)\right) \)

Solution

First, \(R = 1 - S_x(1) = 1 - p_x = q_x. \)

Second,

\[
S = 1 - \exp\left(-\int_0^1 (\mu_{x+t} + k) dt\right) = 1 - e^{-k} \exp\left(-\int_0^1 \mu_{x+t} dt\right) = 1 - e^{-k} S_x(1) = 1 - e^{-k} p_x.
\]

Since \(S = 0.75R, \) we have

\[
1 - e^{-k} p_x = 0.75q_x
\]

\[
e^k = \frac{p_x}{1-0.75q_x}.
\]

Hence, \(k = \ln\left(\frac{p_x}{1-0.75q_x}\right) = \ln\left(\frac{1-q_x}{1-0.75q_x}\right) \) and the answer is (A).
Chapter 1: Survival Distributions

Example 1.9 [Structural Question]

(a) Show that when $\mu_x = Bc^x$, we have

$$p_x = g^{e^{x}(e^t - 1)} ,$$

where g is a constant that you should identify.

(b) For a mortality table constructed using the above force of mortality, you are given that $10p_{50} = 0.861716$ and $20p_{50} = 0.718743$. Calculate the values of B and c.

Solution

(a) To prove the equation, we should make use of the relationship between the force of mortality and p_x.

$$p_x = \exp(-\int_0^t \mu_s ds) = \exp(-\int_0^t Bc^{s+} ds) = \exp\left(-\frac{B}{\ln c} c^{t} (e^t - 1)\right) .$$

This gives $g = \exp(-B/\ln c)$.

(b) From (a), we have $0.861786 = g^{e^{50}(e^{10} - 1)}$ and $0.718743 = g^{e^{50}(e^{20} - 1)}$. This gives

$$\frac{c^{20} - 1}{c^{10} - 1} = \frac{\ln(0.718743)}{\ln(0.861716)} .$$

Solving this equation, we obtain $c = 1.02000$. Substituting back, we obtain $g = 0.776856$ and $B = 0.00500$.

[END]

Now, let us study a longer structural question that integrates different concepts in this chapter.

Example 1.10 [Structural Question]

The function

$$\frac{18000 - 110x - x^2}{18000}$$

has been proposed for the survival function for a mortality model.

(a) State the implied limiting age ω.

(b) Verify that the function satisfies the conditions for the survival function $S_0(x)$.
(c) Calculate $20p_0$.
(d) Calculate the survival function for a life age 20.
(e) Calculate the probability that a life aged 20 will die between ages 30 and 40.
(f) Calculate the force of mortality at age 50.

--- Solution ---

(a) Since

$$S_0(\omega) = \frac{18000 - 110\omega - \omega^2}{18000} = 0,$$

We have $\omega^2 + 110\omega - 18000 = 0 \Rightarrow (\omega - 90)(\omega + 200) = 0 \Rightarrow \omega = 90$ or $\omega = -200$ (rejected).

Hence, the implied limiting age is 90.

(b) We need to check the following three conditions:

(i) $S_0(0) = \frac{18000 - 110 \times 0 - 0^2}{18000} = 1$

(ii) $S_0(\omega) = \frac{18000 - 110\omega - \omega^2}{18000} = 0$

(iii) $\frac{d}{dx}S_0(x) = -\frac{2x + 110}{18000} < 0$

Therefore, the function satisfies the conditions for the survival function $S_0(x)$.

(c) $20p_0 = S_0(20) = \frac{18000 - 110 \times 20 - 20^2}{18000} = 0.85556$

(d) $S_{20}(x) = \frac{S_0(20 + x)}{S_0(20)} = \frac{(90 - 20 - x)(20 + x + 200)}{18000} = \frac{(70 - x)(220)}{15400} = 15400 - 150x + x^2$.

(e) The required probability is

$$10\p_{20} = 10p_{20} - 20p_{20} = \frac{(70 - 10)(10 + 220)}{15400} - \frac{(70 - 20)(20 + 220)}{15400} = 0.89610 - 0.77922 = 0.11688.$$
(f) First, we find an expression for μ_x.

$$\mu_x = \frac{-S'_0(x)}{S_0(x)} = -\frac{-110 - 2x}{18000} = \frac{2x + 110}{(90 - x)(x + 200)}.$$

Hence, $\mu_{50} = \frac{2 \times 50 + 110}{(90 - 50)(50 + 200)} = 0.021$.

[END]

You may be asked to prove some formulas in the structural questions of Exam LTAM. Please study the following example, which involves several proofs.

Example 1.11 [Structural Question]

Prove the following equations:

(a) $\frac{d}{dt} p_x = -t p_x \mu_{x+t}$

(b) $q_x = \int_0^t p_x \mu_{x+s} \, ds$

(c) $\int_0^{\omega-x} p_x \mu_{x+s} \, dt = 1$

Solution

(a) LHS = $\frac{d}{dt} p_x = \frac{d}{dt} \exp(-\int_0^t \mu_{x+s} \, ds) = \exp(-\int_0^t \mu_{x+s} \, ds) \left(-\frac{d}{dt} \int_0^t \mu_{x+s} \, ds \right) = -t p_x (-\mu_{x+t}) = RHS$

(b) LHS = $q_x = \Pr(T_x \leq t) = \int_0^t f_x(s) \, ds = \int_0^t p_x \mu_{x+s} \, ds = RHS$

(c) LHS = $\int_0^{\omega-x} p_x \mu_{x+s} \, dt = \int_0^{\omega-x} f_x(t) \, dt = \omega - q_x = 1 = RHS$

[END]
Exercise 1

1. **[Structural Question]** You are given:
 \[S_0(t) = \frac{1}{1+t}, \quad t \geq 0. \]
 (a) Find \(F_0(t) \).
 (b) Find \(f_0(t) \).
 (c) Find \(S_x(t) \).
 (d) Calculate \(p_{20} \).
 (e) Calculate \(10|5q_{30} \).

2. You are given:
 \[f_0(t) = \frac{(30-t)^2}{9000}, \quad \text{for } 0 \leq t < 30 \]
 Find an expression for \(t^p_5 \).

3. You are given:
 \[f_0(t) = \frac{20-t}{200}, \quad 0 \leq t < 20. \]
 Find \(\mu_{10} \).

4. **[Structural Question]** You are given:
 \[\mu_x = \frac{1}{100-x}, \quad 0 \leq x < 100. \]
 (a) Find \(S_{20}(t) \) for \(0 \leq t < 80 \).
 (b) Compute \(40p_{20} \).
 (c) Find \(f_{20}(t) \) for \(0 \leq t < 80 \).

5. You are given:
 \[\mu_x = \frac{2}{100-x}, \quad \text{for } 0 \leq x < 100. \]
 Find the probability that the age at death is in between 20 and 50.

6. You are given:
 (i) \[S_0(t) = \left(1 - \frac{t}{\omega}\right)^{\alpha}, \quad 0 \leq t < \omega, \quad \alpha > 0. \]
 (ii) \(\mu_{40} = 2\mu_{20} \).
 Find \(\omega \).
Chapter 1: Survival Distributions

7. Express the probabilities associated with the following events in actuarial notation.
 (a) A new born infant dies no later than age 35.
 (b) A person age 10 now survives to age 25.
 (c) A person age 40 now survives to age 50 but dies before attaining age 55.

Assuming that \(S_0(t) = e^{-0.005t} \) for \(t \geq 0 \), evaluate the probabilities.

8. You are given:
 \[
 S_0(t) = \left(1 - \frac{t}{100}\right)^2, \quad 0 \leq t < 100.
 \]

Find the probability that a person aged 20 will die between the ages of 50 and 60.

9. You are given:
 (i) \(2p_x = 0.98 \)
 (ii) \(p_{x+2} = 0.985 \)
 (iii) \(sq_x = 0.0775 \)

Calculate the following:
 (a) \(3p_x \)
 (b) \(2p_{x+3} \)
 (c) \(23q_x \)

10. You are given:
 \[
 q_{x+k} = 0.1(k + 1), \quad k = 0, 1, 2, \ldots, 9.
 \]

Calculate the following:
 (a) \(\text{Pr}(K_x = 1) \)
 (b) \(\text{Pr}(K_x \leq 2) \)

11. [Structural Question] You are given \(\mu_x = \mu \) for all \(x \geq 0 \).
 (a) Find an expression for \(\text{Pr}(K_x = k) \), for \(k = 0, 1, 2, \ldots \), in terms of \(\mu \) and \(k \).
 (b) Find an expression for \(\text{Pr}(K_x \leq k) \), for \(k = 0, 1, 2, \ldots \), in terms of \(\mu \) and \(k \).

Suppose that \(\mu = 0.01 \).
 (c) Find \(\text{Pr}(K_x = 10) \).
 (d) Find \(\text{Pr}(K_x \leq 10) \).
12. Which of the following is equivalent to \(\int_0^t p_x \mu_{x+t} \, dt \)?

(A) \(p_x \)
(B) \(q_x \)
(C) \(f_x(t) \)
(D) \(-f_x(t) \)
(E) \(f_x(t) \mu_{x+t} \)

13. Which of the following is equivalent to \(\frac{d}{dt} p_x \)?

(A) \(-p_x \mu_{x+t} \)
(B) \(\mu_{x+t} \)
(C) \(f_x(t) \)
(D) \(-\mu_{x+t} \)
(E) \(f_x(t) \mu_{x+t} \)

14. (2000 Nov #36) Given:
 (i) \(\mu_x = F + e^{2x}, \ x \geq 0 \)
 (ii) \(0.5p_0 = 0.50 \)
 Calculate \(F \).

(A) \(-0.20 \)
(B) \(-0.09 \)
(C) \(0.00 \)
(D) \(0.09 \)
(E) \(0.20 \)

15. (CAS 2004 Fall #7) Which of the following formulas could serve as a force of mortality?

 (I) \(\mu_x = Bc^x, \quad B > 0, \ C > 1 \)
 (II) \(\mu_x = a(b + x)^{-1}, \quad a > 0, \ b > 0 \)
 (III) \(\mu_x = (1 + x)^{-3}, \quad x \geq 0 \)

(A) (I) only
(B) (II) only
(C) (III) only
(D) (I) and (II) only
(E) (I) and (III) only
Chapter 1: Survival Distributions

16 (2002 Nov #1) You are given the survival function $S_0(t)$, where

(i) $S_0(t) = 1, \quad 0 \leq t \leq 1$

(ii) $S_0(t) = 1 - \frac{e^t}{100}, \quad 1 \leq t \leq 4.5$

(iii) $S_0(t) = 0, \quad 4.5 \leq t$

Calculate μ_4.

(A) 0.45
(B) 0.55
(C) 0.80
(D) 1.00
(E) 1.20

17. (CAS 2004 Fall #8) Given $S_0(t) = \left(1 - \frac{t}{100}\right)^{1/2}$, for $0 \leq t \leq 100$, calculate the probability that a life age 36 will die between ages 51 and 64.

(A) Less than 0.15
(B) At least 0.15, but less than 0.20
(C) At least 0.20, but less than 0.25
(D) At least 0.25, but less than 0.30
(E) At least 0.30

18. (2007 May #1) You are given:

(i) $3p_{70} = 0.95$

(ii) $2p_{71} = 0.96$

(iii) $\int_{71}^{75} \mu_x \, dx = 0.107$

Calculate sp_{70}.

(A) 0.85
(B) 0.86
(C) 0.87
(D) 0.88
(E) 0.89
19. (2005 May #33) You are given:
\[\mu_x = \begin{cases}
0.05 & 50 \leq x < 60 \\
0.04 & 60 \leq x < 70
\end{cases} \]

Calculate \(4|14 q_{50} \).

(A) 0.38
(B) 0.39
(C) 0.41
(D) 0.43
(E) 0.44

20. (2004 Nov #4) For a population which contains equal numbers of males and females at birth:
 (i) For males, \(\mu_x^m = 0.10, x \geq 0 \)
 (ii) For females, \(\mu_x^f = 0.08, x \geq 0 \)

Calculate \(q_{60} \) for this population.

(A) 0.076
(B) 0.081
(C) 0.086
(D) 0.091
(E) 0.096

21. (2001 May #28) For a population of individuals, you are given:
 (i) Each individual has a constant force of mortality.
 (ii) The forces of mortality are uniformly distributed over the interval (0, 2).

Calculate the probability that an individual drawn at random from this population dies within one year.

(A) 0.37
(B) 0.43
(C) 0.50
(D) 0.57
(E) 0.63
22. **[Structural Question]** The mortality of a certain population follows the De Moivre’s Law; that is

\[\mu_x = \frac{1}{\omega - x}, \quad x < \omega. \]

(a) Show that the survival function for the age-at-death random variable \(T_0 \) is

\[S_0(x) = 1 - \frac{x}{\omega}, \quad 0 \leq x < \omega. \]

(b) Verify that the function in (a) is a valid survival function.

(c) Show that

\[p_x = 1 - \frac{1}{\omega - x}, \quad 0 \leq t < \omega - x, \quad x < \omega. \]

23. **[Structural Question]** The probability density function for the future lifetime of a life age 0 is given by

\[f_0(x) = \frac{\alpha \lambda^\alpha}{(\lambda + x)^{\alpha+1}}, \quad \alpha, \lambda > 0 \]

(a) Show that the survival function for a life age 0, \(S_0(x) \), is

\[S_0(x) = \left(\frac{\lambda}{\lambda + x} \right)^\alpha. \]

(b) Derive an expression for \(\mu_x \).

(c) Derive an expression for \(S_x(t) \).

(d) Using (b) and (c), or otherwise, find an expression for \(f_x(t) \).

24. **[Structural Question]** For each of the following equations, determine if it is correct or not. If it is correct, prove it.

(a) \(t u q_x = q_x + u q_{x+t} \)

(b) \(t u q_x = q_x x u q_{x+t} \)

(c) \[\frac{d}{dx} t p_x = t p_x (\mu_x - \mu_{x+t}) \]
Solutions to Exercise 1

1. (a) \(F_0(t) = 1 - \frac{1}{1+t} = \frac{t}{1+t} \).

 (b) \(f_0(t) = \frac{d}{dt} F_0(t) = \frac{1+t-t}{(1+t)^2} = \frac{1}{(1+t)^2} \).

 (c) \(S_x(t) = \frac{S_0(x+t)}{S_0(x)} = \frac{1}{1+x+t} = \frac{1+x}{1+x+t} \).

 (d) \(p_{20} = S_{20}(1) = 21/22 \).

 (e) \(10q_{30} = 10p_{30} - 15p_{30} = S_{30}(10) - S_{30}(15) = \frac{1+30}{1+30+10} - \frac{1+30}{1+30+15} = \frac{31}{41} - \frac{31}{46} = 0.0822 \).

2. \(S_0(t) = \int_t^{30} f_0(u)du = \int_t^{30} \frac{(30-u)^2}{9000} = \int_t^{30} \frac{\exp(\ln(30-u))^{30}}{27000} = \frac{(30-t)^3}{27000} \).

 If follows that \(p_5 = S_5(t) = \frac{S_5(5+t)}{S_5(5)} = \frac{(30-5-t)^3}{(30-5)^3} = \left(1 - \frac{t}{25}\right)^3 \).

3. \(S_0(t) = \int_t^{20} f_0(u)du = \int_t^{20} \frac{(20-u)}{200} = \int_t^{20} \frac{(20-u)^2}{400} = \frac{(20-t)^2}{400} \).

 \(\mu_t = \frac{f_0(t)}{S_0(t)} = \frac{20-t}{200} \cdot \frac{20}{(20-t)^2} = \frac{2}{20-t} \).

 Hence, \(\mu_{10} = 2/(20-10) = 0.2 \).

4. (a) First, note that \(\mu_{20+t} = \frac{1}{100-20-t} = \frac{1}{80-t} \). We have

 \(S_{20}(t) = \exp\left(-\int_0^t \mu_{20+t} du\right) = \exp\left(-\int_0^t \frac{1}{80-u} du\right) \)

 \(= \exp(\ln(80-u)) \bigg|_0^t = \exp(\ln(\frac{80-t}{80}) = 1 - \frac{t}{80} \).

 (b) \(40p_{20} = S_{20}(40) = 1 - 40/80 = 1/2 \).

 (c) \(f_{20}(t) = S_{20}(t)\mu_{20+t} = \left(1 - \frac{t}{80}\right) \left(\frac{1}{80-t}\right) = \frac{1}{80} \).
5. Our goal is to find \(\Pr(20 < T_0 < 50) = S_0(20) - S_0(50) \).

Given the force of mortality, we can find the survival function as follows:

\[
S_0(t) = \exp\left(-\int_0^t \mu_u \, du\right) = \exp\left(-\int_0^t \frac{2}{100 - u} \, du\right)
\]

\[
= \exp\left(2\ln(100 - u)\right) = \exp\left(2 \ln \frac{100 - t}{100}\right) = \left(1 - \frac{t}{100}\right)^2
\]

So, the required probability is \((1 - \frac{20}{100})^2 - (1 - \frac{50}{100})^2 = 0.8^2 - 0.5^2 = 0.39 \).

6. \[
\mu_x = \frac{S_0'(x)}{S_0(x)} = -\frac{\alpha}{\omega} \left(1 - \frac{x}{\omega}\right)^{\alpha-1} \left(1 - \frac{x}{\omega}\right) = \frac{\alpha}{\omega - x}.
\]

We are given that \(\mu_{40} = 2\mu_{20} \). This implies \(\frac{\alpha}{\omega - 40} = \frac{2\alpha}{\omega - 20} \), which gives \(\omega = 60 \).

7. (a) The probability that a new born infant dies no later than age 35 can be expressed as \(35q_0 \).
 [Here we have “q” for a death probability, \(x = 0 \) and \(t = 35 \).]

 Further, \(35q_0 = F_0(35) = 1 - S_0(35) = 0.1605 \).

(b) The probability that a person age 10 now survives to age 25 can be expressed as \(15p_{10} \).
 [Here we have “p” for a survival probability, \(x = 10 \) and \(t = 25 - 10 = 15 \).]

 Further, we have \(15p_{10} = S_{10}(15) = \frac{S_0(25)}{S_0(15)} = 0.9277 \).

(c) The probability that a person age 40 now survives to age 50 but dies before attaining age 55 can be expressed as \(10\{5\}q_{40} \).
 [Here, we have “q” for a (deferred) death probability, \(x = 40 \), \(t = 50 - 40 = 10 \), and \(u = 55 - 50 = 5 \).]

 Further, we have \(10\{5\}q_{40} = S_{40}(10) - S_{40}(15) = \frac{S_0(50)}{S_0(40)} - \frac{S_0(55)}{S_0(40)} = 0.0235 \).

8. The probability that a person aged 20 will die between the ages of 50 and 60 is given by

\[
30\{10\}q_{20} = 30p_{20} - 40p_{20} = S_{20}(30) - S_{20}(40).
\]

\[
S_{20}(t) = \frac{S_0(20 + t)}{S_0(20)} = \frac{\left(1 - \frac{20 + t}{100}\right)^2}{\left(1 - \frac{20}{100}\right)^2} = \left(1 - \frac{t}{80}\right)^2,
\]

So, \(S_{20}(30) = \left(1 - \frac{30}{80}\right)^2 = \frac{25}{64} \), \(S_{20}(40) = \left(1 - \frac{40}{80}\right)^2 = \frac{16}{64} \). As a result, \(30\{10\}q_{20} = 9/64 \).
9. (a) $3p_x = 2p_x \times p_{x+2} = 0.98 \times 0.985 = 0.9653.$

 (b)
 $$3p_x \times 2p_{x+3} = 5p_x = 1 - 5q_x$$
 $$\Rightarrow 2p_{x+3} = \frac{1 - 5q_x}{3p_x} = \frac{1 - 0.0775}{0.9653} = 0.95566$$

 (c) $23q_x = 2p_x - 5p_x = 0.98 - (1 - 0.0775) = 0.0575.$

10. (a) $\Pr(K_x = 1) = 1q_x = p_x \times q_{x+1} = (1 - q_x)q_{x+1} = (1 - 0.1) \times 0.2 = 0.18$

 (b) $\Pr(K_x = 0) = q_x = 0.1$

 $\Pr(K_x = 2) = 2q_x = 2p_x \times q_{x+2} = p_x \times p_{x+1} \times q_{x+2} = (1 - q_x)(1 - q_{x+1})q_{x+2} = 0.9 \times 0.8 \times 0.3 = 0.216.$

 Hence, $\Pr(K_x \leq 2) = 0.1 + 0.18 + 0.216 = 0.496.$

11. (a) Given that $\mu_k = \mu$ for all $x \geq 0$, we have $ip_x = e^{-\mu t}, p_x = e^{-\mu t}$ and $q_x = 1 - e^{-\mu t}$.

 $\Pr(K_x = k) = kq_x = ip_x q_{x+k} = e^{-\mu t} (1 - e^{-\mu t}).$

 (b) $\Pr(K_x \leq k) = k+1q_x = 1 - e^{-(k+1)}\mu.$

 (c) When $\mu = 0.01$, $\Pr(K_x = 10) = e^{-10 \times 0.01} (1 - e^{-0.01}) = 0.0090.$

 (d) When $\mu = 0.01$, $\Pr(K_x \leq 10) = 1 - e^{-(10 + 1) \times 0.01} = 0.1042.$

12. First of all, note that ip_x, μ_{x+u} in the integral is simply $f_x(u)$.

 $$\int_0^t p_x \mu_{x+u} du = \int_0^t f_x(u) du = \Pr(T_x \leq t) = F_x(t) = tq_x.$$

 Hence, the answer is (B).

13. Method I: We use $ip_x = 1 - iq_x$. Differentiating both sides with respect to t,

 $$\frac{d}{dt} p_x = -\frac{d}{dt} q_x = -\frac{d}{dt} F_x(t) = -f_x(t).$$

 Noting that $f_x(t) = ip_x, \mu_{x+u}$, the answer is (A).

 Method II: We differentiate ip_x with respect to t as follows:

 $$\frac{d}{dt} p_x = \frac{d}{dt} S_x(t) = \frac{d}{dt} \exp\left(-\int_0^t \mu_{x+u} du\right)$$

 $$= \exp\left(-\int_0^t \mu_{x+u} du\right) \frac{d}{dt} \left(-\int_0^t \mu_{x+u} du\right)$$

 Recall the fundamental theorem of calculus, which says that $\frac{d}{dt} \int_0^t g(u) du = g(t)$. Thus

 $$\frac{d}{dt} p_x = \exp\left(-\int_0^t \mu_{x+u} du\right) (-\mu_{x+1}) = -ip_x, \mu_{x+1}.$$

 Hence, the answer is (A).
14. First, note that
\[0.4 p_0 = 0.5 = \exp \left(- \int_0^{0.4} \mu_u du \right) = \exp \left(- \int_0^{0.4} (F + e^{2u}) du \right). \]

The exponent in the above is
\[- \int_0^{0.4} (F + e^{2u}) du = - \left(Fu + \frac{1}{2} e^{2u} \right)_0^{0.4} \]
\[= -0.4F - 1.11277 + 0.5 \]
\[= -0.4F - 0.61277 \]

As a result, \(0.5 = e^{-0.4F-0.61277} \), which gives \(F = 0.2 \). Hence, the answer is (E).

15. Recall that we require the force of mortality to satisfy the following two criteria:
(i) \(\mu_x \geq 0 \) for all \(x \geq 0 \),
(ii) \(\int_0^\infty \mu_x dx = \infty \).

All three specifications of \(\mu_x \) satisfy Criterion (i). We need to check Criterion (ii).
We have
\[\int_0^\infty Bc^x dx = \frac{Bc^x}{\ln c} \bigg|_0^\infty = \infty, \]
\[\int_0^\infty \frac{a}{b+x} dx = a \ln(b+x) \bigg|_0^\infty = \infty, \]
and
\[\int_0^\infty \frac{1}{(1+x)^3} dx = -\frac{1}{2(1+x)^2} \bigg|_0^\infty = \frac{1}{2}. \]

Only the first two specifications can satisfy Criterion (ii). Hence, the answer is (D).
[Note: \(\mu_x = Bc^x \) is actually the Gompertz’ law. If you knew that you could have identified that \(\mu_x = Bc^x \) can serve as a force of mortality without doing the integration.]

16. Recall that \(\mu_x = \frac{S_x'(t)}{S_x(t)} \).

Since we need \(\mu_t \), we use the definition of \(S_0(t) \) for \(1 \leq t \leq 4.5 \):
\[S_0(t) = 1 - \frac{e^t}{100}, \quad -S_0'(t) = \frac{e^t}{100}. \]

As a result, \(\mu_t = \frac{e^4}{100} = 1.203 \). Hence, the answer is (E).
17. The probability that a life age 36 will die between ages 51 and 64 is given by
\[S_{36}(15) - S_{36}(28). \]
We have
\[S_{36}(t) = \frac{S_o(36 + t)}{S_o(36)} = \left(\frac{1 - \frac{36 + t}{100}}{1 - \frac{36}{100}} \right)^{1/2} = \left(\frac{64 - t}{64} \right)^{1/2} = \frac{\sqrt{64 - t}}{8}. \]
This gives \(S_{36}(15) = \frac{7}{8} \) and \(S_{36}(28) = \frac{6}{8} \). As a result, the required probability is
\[S_{36}(15) - S_{36}(28) = 1/8 = 0.125. \]
Hence, the answer is (A).

18. The computation of \(5p_{70} \) involves three steps.
First, \(p_{70} = \frac{3p_{70}}{2} = \frac{0.95}{0.96} = 0.9896. \)
Second, \(4p_{71} = e^{- \int_{71}^{75} \mu_t \, dt} = e^{-0.107} = 0.8985. \)
Finally, \(5p_{70} = 0.9896 \times 0.8985 = 0.889. \) Hence, the answer is (E).

19.
- \(4p_{50} = e^{-0.05 \times 4} = 0.8187 \)
- \(10p_{50} = e^{-0.05 \times 10} = 0.6065 \)
- \(8p_{60} = e^{-0.04 \times 8} = 0.7261 \)
- \(18p_{50} = 10p_{50} \times 8p_{60} = 0.6065 \times 0.7261 = 0.4404 \)
Finally, \(4|14q_{50} = 4p_{50} - 18p_{50} = 0.8187 - 0.4404 = 0.3783. \) Hence, the answer is (A).

20. For males, we have
\[S_0^m(t) = e^{- \int_0^t \mu_0^m \, du} = e^{- \int_0^{0.10} \, du} = e^{-0.10t}. \]
For females, we have
\[S_0^f(t) = e^{- \int_0^t \mu_0^f \, du} = e^{- \int_0^{0.08} \, du} = e^{-0.08t}. \]
For the overall population,
\[S_0(60) = \frac{e^{-0.1 \times 60} + e^{-0.08 \times 60}}{2} = 0.005354, \]
and
\[S_0(61) = \frac{e^{-0.1 \times 61} + e^{-0.08 \times 61}}{2} = 0.00492. \]
Finally, \(q_{60} = 1 - p_{60} = 1 - \frac{S_0(60)}{S_0(60)} = 0.081 \). Hence, the answer is (B).

21. Let \(M \) be the force of mortality of an individual drawn at random, and \(T \) be the future lifetime of the individual. We are given that \(M \) is uniformly distributed over \((0, 2)\). So the density function for \(M \) is \(f_M(\mu) = \frac{1}{2} \) for \(0 < \mu < 2 \) and 0 otherwise.

This gives

\[
\begin{align*}
\Pr(T \leq 1) &= E[\Pr(T \leq 1 \mid M)] \\
&= \int_0^\infty \Pr(T \leq 1 \mid M = \mu) f_M(\mu) d\mu \\
&= \int_0^2 (1 - e^{-\mu}) \frac{1}{2} d\mu \\
&= \frac{1}{2} \left(2 + e^{-2} - 1 \right) \\
&= \frac{1}{2} (1 + e^{-2}) \\
&= 0.56767.
\end{align*}
\]

Hence, the answer is (D).

22. (a) We have, for \(0 \leq x < \omega \),

\[
S_0(x) = \exp(-\int_0^x \mu_s ds) = \exp(-\int_0^x \frac{1}{\omega - s} ds) = \exp([\ln(\omega - s)]_0^x) = e^{\ln(1 - \frac{x}{\omega})} = 1 - \frac{x}{\omega}.
\]

(b) We need to check the following three conditions:

(i) \(S_0(0) = 1 - 0/\omega = 1 \)

(ii) \(S_0(\omega) = 1 - \omega/\omega = 0 \)

(iii) \(S_0'(\omega) = -1/\omega < 0 \) for all \(0 \leq x < \omega \), which implies \(S_0(x) \) is non-increasing.

Hence, the function in (a) is a valid survival function.

(c) \(\mu_x = \frac{S_0(x+t)}{S_0(x)} = \frac{1 - \frac{x+t}{\omega}}{1 - \frac{x}{\omega}} = \frac{\omega - x - t}{\omega - x} = 1 - \frac{t}{\omega - x} \), for \(0 \leq t < \omega - x, \ x < \omega \).

23. (a) \(S_0(x) = 1 - F_0(x) = 1 - \int_0^x f_0(s) ds = 1 - \int_0^x \frac{\alpha \lambda^\alpha}{(\lambda + s)^{\alpha+1}} ds = \frac{\lambda^\alpha}{(\lambda + x)^\alpha} \).

(b) \(\mu_x = \frac{f_0(x)}{S_0(x)} = \frac{\alpha}{\lambda + x} \).
(c) \(S_x(t) = \frac{S_0(x+t)}{S_0(x)} = \left(\frac{\lambda}{\lambda + x + t} \right)^{\alpha} \left(\frac{\lambda + x}{\lambda + x + t} \right)^{\alpha} \).

(d) \(f_x(t) = S_x(t)\mu_{x+t} = \left(\frac{\lambda + x}{\lambda + x + t} \right)^{\alpha} \frac{\alpha}{\lambda + x + t} \).

24. (a) No, the equation is not correct. The correct equation should be \(t_uq_x = p_x \times uq_{x+t} \).

(b) No, the equation is not correct. The correct equation should be \(t_uq_x = p_x \times uq_{x+t} \).

(c) Yes, the equation is correct. The proof is as follows:

\[
\frac{d}{dx} p_x = \frac{d}{dx} \frac{S_0(x+t)}{S_0(x)} = \frac{S_0(x)S_0'(x+t) - S_0(x+t)S_0'(x)}{[S_0(x)]^2}
= \frac{S_0(x)(-f_0(x+t)) - S_0(x+t)(-f_0(x))}{[S_0(x)]^2}
= \frac{-f_0(x+t)}{S_0(x)} + \frac{S_0(x+t)}{S_0(x)} f_0(x)
= \frac{-f_0(x+t)}{S_0(x+t)} + \frac{S_0(x+t)}{S_0(x)} f_0(x)
= -\mu_{x+t}p_x + t_p_x \mu_x
= t_p_x (\mu_x - \mu_{x+t})
\]