

Flashcards for SOA Exam STAM

2nd Edition, 3rd Printing

©Copyright 2020 by Actuarial Study Materials, a division of ArchiMedia Advantage, Inc. All rights reserved. Reproduction in whole or in part without express written permission from the publisher is strictly prohibited.

Table 1: Lessons in ASM manual corresponding to topic

Topic	Lessons
Probability Review	1–4
Insurance Coverages	5–6
Loss reserving and ratemaking	<i>7</i> –10
Severity Distributions	11–18
Risk Measures	16
Frequency Distributions	19–21
Aggregate Distributions	22–27
Parametric Estimators	29–31
Evaluation of Fit	32–36
Classical Credibility	38–40
Bayesian Credibility	41–46
Bühlmann Credibility	48-52
Empirical Bayes Methods	53-54

*

Five components of auto insurance

- 1. Liability insurance (bodily injury and property damage)
- 2. Uninsured, underinsured, and unidentified motorist coverage
- 3. Medical benefits
- 4. Collision
- 5. Comprehensive

Lesson 5

¥

Two ways for insurance company to recover losses

Insurance Coverages

 \star

1. Subrogation

2. Salvage

Lesson 5

50B

¥

Five components of homeowners insurance

- 1. Damage to dwelling
- 2. Damage to garage/other structures on premises
- 3. Damage to contents
- 4. Additional living expenses
- 5. Liability

Lesson 5

Disappearing deductible

Insurance Coverages

Deductible of d that decreases linearly to 0 at d + k

Lesson 5 52B

Coinsurance clause

If policy limit is less than 100k% of value at time of damage, insurance pays $\frac{limit}{(k \times value)}$ times loss.

Lesson 5 53B

Loss Elimination Ratio

$$LER_X(d) = \frac{\mathbf{E}[X \wedge d]}{\mathbf{E}[X]}$$

Loss Elimination Ratio for exponential

$$LER(d) = 1 - e^{-d/\theta}$$

Loss Elimination Ratio for two-parameter Pareto

LER(d) =
$$1 - \left(\frac{\theta}{d + \theta}\right)^{\alpha - 1}$$

 $\alpha > 1$

Loss Elimination Ratio for single-parameter Pareto for $d \ge \theta$

LER
$$(d) = 1 - \frac{(\theta/d)^{\alpha-1}}{\alpha}$$

 $\alpha > 1, d \ge \theta$

Formula for ILF

$$ILF(U) = \frac{\mathbf{E}[X \wedge U]}{\mathbf{E}[X \wedge B]}$$

where B is basic limit

×

Three cautions for calculating ILFs

- 1. Losses may not be independent of ILF.
- 2. Policy limit selected may depend on likelihood of loss.
- 3. Losses but not LAE are limited.