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Preface

Exam SRM (Statistics for Risk Modeling) is a relatively new exam which was offered for the
first time in September 2018 by the Society of Actuaries (SOA). In 2019, it will be delivered via
computer-based testing (CBT) in January (January 3 to 9), May (May 10 to 16), and September
(September 5 to 11). The registration deadlines are November 27, 2018, April 9, 2019, and August 6,
2019, respectively. This new exam is a replacement of the old Validation by Educational Experience
(VEE) Applied Statistics requirement and serves as the formal prerequisite for the new Predictive
Analytics (PA) exam. The construction of Exam SRM, which revolves around making use of various
statistical models to draw inferences and make predictions for the future, is an important step that
the SOA takes to incorporate more statistics, most notably predictive modeling, into the modern-
day actuarial curriculum. You will considerably sharpen your statistics toolkit as a result of taking
(and, with the use of this study manual, passing!) Exam SRM.

It is assumed that you have taken a calculus-based mathematical statistics course (e.g., the one
you use to fulfill your VEE Mathematical Statistics requirement) and are no stranger to concepts like
(maximum likelihood) estimators, confidence intervals, and hypothesis tests. In Exam SRM, we will
make intensive use of these terms to perform point/interval estimation/prediction and hypothesis
tests. There will also be instances (mostly in Chapters 2, 3, and 9) in which you will perform matrix
multiplication and inversion, which you should have learned from your linear algebra class. Prior
exposure to the R programming language, however, is not required.

Syllabus

The syllabus of Exam SRM is very broad (but not necessarily deep) in scope, covering miscellaneous
topics in linear regression models, generalized linear models, time series analysis, and data mining
techniques, many of which are new topics not tested in any SOA past exams. As a rough estimate,
you need at least three months of intensive study to master the material in this exam. The six
main topics of the syllabus along with their approximate weights and where they are covered in this
manual are shown below:

Topic
Range of
Weight

Relevant Chapters
of This Manual

1. Basics of Statistical Learning 7.5–12.5% Chapter 4
2. Linear Models 40–50% Chapters 1–5
3. Time Series Models 12.5–17.5% Chapters 6–7
4. Principal Components Analysis 2.5–7.5% Chapter 9
5. Decision Trees 10–15% Chapter 8
6. Cluster Analysis 10–15% Chapter 10

Historically, Topics 2 and 3 on linear models and time series models, which account for more
than 50% of the exam, have been on the syllabuses of SOA exams for long (well before the authors
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of this study manual were born!). They were tested in the 1980s and 1990s in Course 120 (Applied
Statistical Methods). From 2000 to 2004, they entered the syllabus of Course 4 (Actuarial Mod-
eling), which was the predecessor of the current Exam C/STAM. From 2005 to June 2018, they
were not formally examined but became part of the VEE Applied Statistics requirement. Effective
from July 2018, they returned to the exam arena through the newly created Exam SRM, with a
significant coverage of non-linear models added. In this study manual, we have extracted virtually
all relevant exam questions on linear models and time series models from the above past exams
that apply to the current syllabus. Despite the seniority of these past exam questions and that
different syllabus texts were used when these exams were offered, they are by no means obsolete
and will prove instrumental in illustrating some otherwise obscure concepts in the current syllabus
and consolidating your understanding as you progress along this manual.

The SRM syllabus does feature a number of contemporary material. Topics 1, 4, 5, 6, and part
of Topic 2 are completely new topics that are introduced to the SOA curriculum for the first time.
They pertain to the discipline of statistical learning and predictive analytics, which are very much
in vogue nowadays.

Exam Format

Exam SRM is a three and one-half hour computer-based exam consisting of 35 multiple-choice
questions. Each question includes five answer choices identified by the letters (A), (B), (C), (D),
and (E), only one of which is correct. No credit will be given for omitted answers and no credit will
be lost for wrong answers; hence, you should answer all questions, even those for which you have to
guess.

According to the SOA, the pass mark for the September 2018 sitting was 70%, which means
that candidates needed to answer about 23 to 24 out of 33 to 34 graded questions correctly
to earn a pass (in the CBT environment, one or two questions may be pilot questions that are not
graded).

The SOA has released 28 sample questions, which can be accessed from https://www.soa.org/

Files/Edu/2018/exam-srm-sample-questions.pdf. Although Exam SRM is a new exam, you
can expect that many of the exam questions will fall into the following three categories, as the SRM
sample questions indicate:

1. Simple computational questions given a small raw dataset: In some exam questions (e.g., Sam-
ple Questions 1, 3, 4, 9, 11, 15, 23, 28), you will be asked to do some simple calculations using
a small dataset, with a size of not more than 10 observations. While many statistical models
in the exam syllabus require computers to implement, the fact that the dataset is so small
makes it possible to perform at least part of the analysis. Why should the SOA make these
unrealistic exam questions? Shouldn’t we all use computer to do the work? Although you
probably will not have the chance to perform hand calculations in the workplace, these compu-
tational questions encourage you to understand the mechanics of the statistical methodology
being tested—you need to know what happens in a particular step of the modeling process
and which formulas to use—and are instructive from an educational point of view.

2. Simple computational/analytical questions given summarized model output: Constrained by
its multiple-choice nature and the absence of computing technology in the CBT environment,
the exam will not ask you to use software packages to analyze a large dataset from scratch,
nor will it require that you work out bookwork proofs. Rather, you should expect to see

Copyright © 2019 ACTEX Learning ACTEX Study Manual for Exam SRM (May 2019 Edition)
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some questions (e.g., Sample Questions 17, 18, 19, 24, 27) in which the model concerned
has already been fitted by computers. Given some summarized model outputi such as tables
of parameter estimates and/or plots, you are then asked to perform some simple tasks like
interpreting the results of the model, conducting a hypothesis test, making point/interval
estimations/predictions, and assessing the goodness of the model, all of which require only
pen-and-paper calculations.

3. Conceptual/True-or-false questions: According to students’ comments, the majority of the
questions in the most recent SRM exams are conceptual (also known as true-or-false) items,
designed to test the uses, motivations, pros and cons, and do’s and don’ts of different statistical
methods. Sample Questions 2, 5, 6, 7, 8, 10, 12, 13, 14, 16, 20, 21, 22, 25, 26 all belong to
this type of questions. You are typically given three statements and asked to pick the correct
one(s). The generic structure of these questions is as follows:

Determine which of the following statements about [...a particular statistical con-
cept/method...] is/are true.

I. (blah blah blah...)

II. (blah blah blah...)

III. (blah blah blah...)

(A) I only

(B) II only

(C) III only

(D) I, II, and III

(E) The correct answer is not given by (A), (B), (C), or (D).

or

(A) None

(B) I and II only

(C) I and III only

(D) II and III only

(E) The correct answer is not given by (A), (B), (C), or (D).

Do not be under the impression that these conceptual questions are easy. The conceptual
items being tested can be tricky and at times controversial: Rather than an absolute “yes”
or “no,” the statement is more a matter of extent. Sadly, if you get any of Statements I, II,
or III incorrect, you will likely be led to the incorrect final answer. By the way, Answer (E)
occasionally turns out to be the right answer—it is not a filler!

Syllabus Texts

Exam SRM has two required textbooks:

1. Regression Modeling with Actuarial and Financial Applications, by Edward W. Frees, 2010
(referred to as Frees in the sequel). The web page of the book is http://instruction.bus.

wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/home.html.

iAccording to the exam syllabus, “ability to solve problems using the R programming language will not be
assumed. However, questions may present (self-explanatory) R output for interpretation.”
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2. An Introduction to Statistical Learning: With Applications in R, by Gareth James, Daniela
Witten, Trevor Hastie, and Robert Tibshirani, 2013, corrected 8th printing, freely available
at http://www-bcf.usc.edu/~gareth/ISL/ (referred to as “James et al.” in the sequel).
Although written by four renowned statisticians, this book is designed for non-statisticians and
de-emphasizes technical details (formulas and proofs in particular). In fact, one of the selling
points of the book is to facilitate the implementation of the statistical learning techniques
introduced in the book using R (a black box approach, however!). .

Among the six topics in the exam syllabus, Frees covers Topics 2, 3, and part of Topic 1, while
James et al. covers Topics 4, 5, 6, and most of Topic 1. These two texts duplicate to a certain
extent when it comes to the chapters on linear regression models. In this study manual, we have
streamlined the material in both texts to result in more coherent expositions without unnecessary
repetition. As far as possible, we have followed the notation in the two texts. You should note that
exam questions can freely use symbols in the texts without defining the symbols for you.

What is Special about This Study Manual?

We fully understand that you have an acutely limited amount of time for study and that the exam
syllabus is insanely broad. With this in mind, the overriding objective of this study manual is to help
you grasp the material in Exam SRM, which is a relatively new exam, effectively and efficiently, and
pass it with considerable ease. Here are some of the invaluable features of this manual for achieving
this all-important goal:

• Each chapter and section starts by explicitly stating which learning objectives and outcomes
of the SRM exam syllabus we are going to cover, to assure you that we are on track and
hitting the right target.

• The learning outcomes of the syllabus are then demystified by precise and concise expositions
synthesized from the syllabus readings, helping you acquire a deep and solid understanding
of the subject matter.

• Formulas and results of utmost importance are boxed for easy identification and memoriza-
tion.

• Mnemonics and shortcuts are emphasized, so are highlights of important exam items and
common mistakes committed by students.

• To succeed in any (actuarial) exam, the importance of practicing a wide variety of non-
trivial problems to sharpen your understanding and develop proficiency, as always, cannot be
overemphasized. This study manual embraces this learning by doing approach and intersperses
its expositions with more than 180 in-text examples and 300 end-of-chapter problems
(the harder ones are labeled as [HARDER!]), which are original or taken/adapted from
relevant SOA/CAS past exams, all with step-by-step solutions and problem-solving remarks,
to consolidate your understanding and give you a sense of what you can expect to see in
the real exam. As you read this manual, skills are honed and confidence is built. As a
general guide, you should study all of the in-text examples and work out at least half of the
end-of-chapter/section problems.
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• While the focus of this study manual is on exam preparation, we take every opportunity to
explain the meaning of various formulas in the syllabus. The interpretations and insights we
provide will foster a genuine understanding of the syllabus material and reduce the need for
slavish memorization. At times, we present brief derivations in the hope that they can help
you appreciate the mathematical structure of the formulas in question. It is the authors’
belief and personal experience that a solid understanding of the underlying concepts is always
conducive to achieving good exam results.

• Although this study manual is self-contained in the sense that studying this manual is sufficient
for the purpose of passing the exam, relevant chapters and sections of the two syllabus texts
are referenced at the beginning of each section, for those who would like to learn more.

• Two original full-length practice exams designed to mimic the real exam conclude this study
manual giving you a holistic review of the syllabus material.

What is New in this May 2019 Edition?

• While there have been updates throughout the entire manual in terms of content, clarity,
and exam focus, the improvements are particularly significant in Sections 1.2, 1.4.1, 4.1.3,
4.2, 4.3.2, 4.3.3, 4.3.4, 5.1.3, and 5.3.2. More remarkably, the three data-mining chapters,
Chapters 8, 9, and 10, are thoroughly rewritten.

• Compared to the September 2018 edition, the May 2019 edition features more than 40 new
in-text examples and 60 new end-of-chapter problems. They include:

Examples: 1.2.6, 1.3.3, 1.3.6, 1.4.1, 2.1.2, 2.1.6, 3.4.3, 4.1.4, 4.1.5, 4.1.6, 4.2.1, 4.2.2, 4.2.3,
4.2.6, 4.3.2, 4.3.3, 4.3.9, 4.4.3, 4.4.7, 5.1.4, 5.1.18, 5.1.20, 5.2.1, 5.2.11, 5.3.5, 6.1.3,
6.2.2 and most examples in Chapters 8, 9, and 10

Problems: 1.6.8, 1.6.10, 1.6.22, 1.6.23, 1.6.28, 1.6.29, 1.6.31, 1.6.34, 1.6.38, 1.6.50, 2.5.11,
3.5.8, 3.5.17, 4.5.2, 4.5.3, 4.5.7, 4.5.8, 4.5.10, 4.5.11, 4.5.12, 4.5.13, 4.5.14, 4.5.21,
4.5.22, 4.5.23, 4.5.24, 4.5.25, 4.5.29, 4.5.31, 4.5.32, 4.5.36, 4.5.37, 4.5.38, 5.4.4,
5.4.5, 5.4.6, 5.4.14, 5.4.26, 5.4.33 and most problems in Chapters 8, 9, and 10

Many of these examples and problems are of the true-or-false type, which, according to stu-
dents’ comments, has figured prominently in recent SRM exams.

• Relevant questions from the very recent Fall 2018 MAS-I and MAS-II exams of the CAS have
also been included.

• A new practice exam (Practice Exam 2) has been designed to give you an additional opportu-
nity to do an overall review of the exam syllabus. This new exam, along with Practice Exam
1, has a nice combination of computational and conceptual exam items.

• All known typographical errors have been fixed.

Exam Tables

In the real exam, you will be supplied with three statistical tables, namely, the standard normal
distribution, t-distribution, and chi-square distribution tables. They are available for download
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at https://www.soa.org/Files/Edu/2018/exam-srm-tables.pdf and will be intensively used
during your study (especially in Parts I and II of this study manual) as well as in the exam. You
should not hesitate to print out a copy and learn how to locate the relevant entries in these tables
as you work out examples and problems in this manual.
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Errata

While we go to great lengths to polish and proofread this manual, some mistakes will inevitably go
unnoticed. We would like to apologize in advance for any errors, typographical or otherwise, and
would greatly appreciate it if you could bring them to our attention via email so that they can be
fixed in a future edition of the manual.

• For questions about Chapters 1 to 7, please email Ambrose Lo at ambrose-lo@uiowa.edu.

• For questions about Chapters 8 and 10, please email Daniël Linders at dlinders@illinois.edu
(and c.c. ambrose-lo@uiowa.edu).

• For questions about Chapter 9, please email Runhuan Feng at rfeng@illinois.edu (and c.c.
ambrose-lo@uiowa.edu).

Compliments and criticisms are also welcome. The authors will try their best to respond to any
inquiries as soon as possible and an ongoing errata list will be maintained online at https://sites.
google.com/site/ambroseloyp/publications/SRM. Students who report errors will be entered
into a quarterly drawing for a $100 in-store credit.

Runhuan Feng
Daniël Linders

Ambrose Lo
February 2019
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Regression Models
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Chapter 1

Simple Linear Regression

EXAM SRM LEARNING OBJECTIVES

2. Topic: Linear Models (40-50%)

Learning Objectives

The Candidate will understand key concepts concerning generalized lin-
ear models.

Learning Outcomes

The Candidate will be able to:

b) Estimate parameters using least squares and maximum likelihood.

d) Select an appropriate model, considering:

• t and F tests

f) Calculate and interpret predicted values, confidence, and prediction
intervals.

OPTIONAL SYLLABUS READING(S)

• Frees, Chapter 2 (except Section 2.6)

• James et al., Section 3.1

Chapter overview: This chapter examines in detail simple linear regression i (SLR), arguably the
simplest statistical model in the entire Exam SRM, where we seek to understand the linear rela-
tionship between a pair of variables. In this somewhat simplistic framework, virtually all of the
essential ideas of linear regression, such as parameter estimation, hypothesis testing, construction
of confidence intervals, and prediction, can be well illustrated. In addition, by restricting ourselves
to the two-dimensional setting, relationships between variables can be displayed graphically and
valuable intuition about regression techniques gained.

iFrees refers to simple linear regression as “basic” linear regression. However, both James et al. and the SOA
sample questions use the more common term “simple” linear regression, and we follow this usage. An alternative but
somewhat unprofessional name for simple linear regression is two-variable regression, which was used in some old
SOA problems. This, however, should not be confused with regression with two explanatory variables.

3



4 CHAPTER 1. SIMPLE LINEAR REGRESSION

This chapter is organized as follows. Section 1.1 walks you through a simple motivating example
that gives you some sense of linear regression that is valuable for and beyond taking Exam SRM.
The SLR model is then set up and the basic statistical terminology that will be used throughout this
study manual is introduced. In Section 1.2, we discuss how the SLR model can be fitted to a dataset
by means of the least squares method. Section 1.3 assesses the goodness of fit of the regression
model and the significance of the explanatory variable in “explaining” the response variable. The
results can be conveniently tabulated in a so-called ANOVA table and summarized by a simple
proportion measure known as the coefficient of determination. Section 1.4 proceeds to draw inference
about the underlying regression parameters. Confidence intervals are constructed and hypothesis
tests performed. Finally, Section 1.5 concludes this chapter with the practically important task
of predicting future responses. The subtle differences between estimation and prediction are also
pointed out.

1.1 Overture

OPTIONAL SYLLABUS READING(S)

• Frees, Sections 2.1 and 2.2

• James et al., Subsection 3.1.1

1.1.1 A Motivating Example

The following dataset records the overall examination scores,ii correct to the nearest integer, of 20
students who took Course Y (a notoriously difficult actuarial course):

78 89 90 72 89 77 66 85 84 86
77 88 61 87 96 44 84 62 84 80

Figure 1.1.1 gives a scatter plot of the scores.

Question: Predict the exam score of the next student who will take Course Y.

“Naive” answer: Use the average of the 20 scores, namely ȳ = 78.80. Observe that the exam
scores scatter around the sample mean but are subject to considerable fluctuations. The use
of ȳ is justifiable if the exam scores are, for instance, independent and identically distributed
(i.i.d.). In the absence of further information, this seems to be the best we can do.

Is the i.i.d. model suitable in this context? It is, only if the students are relatively homogeneous in
nature. Given the diversity of students in this day and age, the i.i.d. assumption appears untenable.

Can the exam scores of these students in another course be of use? Suppose that the
exam scores of Course X of these 20 students are also available in Table 1.2. Because both Course
X and Course Y were taught by the same devilish instructor, Ambrose Lo, and Course X serves as
a prerequisite for Course Y, it seems plausible that the Course X scores will be useful in predicting

iiThese are real exam scores at the University of Iowa.
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Figure 1.1.1: Scores of 20 students who took Course Y. The red horizontal line represents the sample
mean level of ȳ = 78.80.

Course X Score Course Y Score Course X Score Course Y Score
70 78 79 77
87 89 86 88
94 90 58 61
82 72 92 87
87 89 101 96
75 77 52 44
77 66 81 84
95 85 75 62
86 84 99 84
90 86 58 80

Table 1.2: Exam scores of Course X and Course Y for 20 students.
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6 CHAPTER 1. SIMPLE LINEAR REGRESSION

Course Y scores (or else the prerequisite can be lifted!). Now each observation in the dataset consists
of the values of two variables of a student:iii

(x, y) := (Course X score, Course Y score).

Figure 1.1.2 plots the scores of Course Y (y) against the scores of Course X (x) for the dataset.
We can observe a pretty strong linear relationship between x and y (the strength of this linear
relationship will be formally quantified using techniques in Section 1.3), with students scoring high
in Course X having a tendency to perform well in Course Y too. As far as prediction is concerned,
it seems more reliable to assume a linear function relating the scores of students in the two courses,
and predict the score of the next student in Course Y based on his/her score in Course X than to
use ȳ.

Figure 1.1.2 also fits a sloped straight line to the scatter plot (by the least squares method, to
be discussed in Section 1.2). This straight line summarizes the linear relationship between scores
of Course X and Course Y, and can be used for predicting future students’ scores in Course Y on
the basis of how they performed in Course X. Compared to Figure 1.1.1, the fluctuations of the 20
observations around the sloped straight line appear much smaller. Thus it seems fair to say that
a function linear in the scores of Course X (the sloped straight line) can better account for the
observed variation in scores of Course Y than a simple constant function (the horizontal line). A
crucial question of interest to the instructor of Course Y is: How much is the “sloped straight line”
model better than the “i.i.d.” model (or “horizontal line” model)? Taking this a step further, can
one assert that a student doing well in Course X tends to do well in Course Y? These questions will
be addressed in Sections 1.3 and 1.4 in a statistical framework.

Linear regression. The above example highlights the essence of regression, which is a statistical
technique of employing data on some other variables (e.g. scores of Course X) relevant to the main
variable of interest (e.g., scores of Course Y) in order to better explain the observed variation in
the latter. It modifies the “i.i.d. assumption” typically used in the VEE Mathematical Statistics
course by keeping “independent” but removing “identically distributed”—the 20 students now differ
in terms of distribution according to their scores of Course X. In particular, regression involving the
use of linear functions to summarize the relationship between variables is called linear regression,
which is the focus of Chapters 1 to 4 of this manual and a main topic of Exam SRM. In the exam
scores example above, we assumed that

y = β0 + β1x+ ε

for some unknown parameters β0 and β1, and some random deviation ε.
In regression analysis, each observation consists of measurements on a number of variables related

to an individual experimental/observational unit sampled from the population. To make our studies
in Exam SRM more systematic, there are two common ways to classify variables, by their role in
the study, or by their nature:

• Response vs. explanatory variables: We designate the variable of primary interest as the
response variable (or dependent variable)—because we are interested in their “response”—and
those which might provide supplementary information useful for explaining the behavior of
the response variable as the explanatory variables. Alternative names commonly used for

iiiThroughout this study manual, the symbol “:=” means “is defined as.”
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Figure 1.1.2: A plot of scores of Course Y against scores of Course X. The red sloped line is fitted
by the method of least squares.

“explanatory” variables are independent variables, predictors, regressors, and features, and
these terms are used interchangeably in the two SRM texts and in this manual.

Here are some common examples of response and explanatory variables:

Response Variable Explanatory Variable
Opinion Sex, age, educational level, etc.
House price Building age, facilities, location
Insurance premium Sex, age, living style, health conditions
Voltage Current

Typical questions one wishes to answer by linear modeling include:

1. Does a certain explanatory variable affect the response significantly? If so, is the effect
a positive or negative one?

2. Is the regression model adequate for explaining the relation between the response and
the explanatory variables?

3. Can we predict a future response based on the values of the explanatory variables?

• Continuous and categorical variables: This will be treated in detail in Subsection 2.3.1.
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8 CHAPTER 1. SIMPLE LINEAR REGRESSION

1.1.2 Simple Linear Regression

Model equation. In an SLR model, it is postulated that the response variable y is related to the
single explanatory variable x via the (approximatelyiv) linear relationship

y = β0 + β1x+ ε, (1.1.1)

where

β0 and β1 are unknown regression coefficients (or regression parameters), about which
inference is to be made later in this chapter, and

ε is the unobservable random error term (also called the noise term) that accounts for
the fluctuation of y about the regression line β0 + β1x.

Among the two SRM syllabus texts, Frees denotes variables in lowercase letters, as in (1.1.1),
whereas James et al. uses capital letters, e.g., X and Y . In this manual, we mostly follow Frees
since it is the main text that covers regression and time series models.

In (1.1.1), we say that y is regressed on x. The straight line β0 + β1x is called the regression
function, which is the primary target of interest in regression analysis. In particular, β0 is called
the intercept, which captures the value of E[y] when x = 0, and β1 is the slope parameter, which
measures the increase in E[y] per unit increase in x. Because all of the observations from the SLR
model share the same parameters β0 and β1, the regression function is also known as the systematic
component of the model. In contrast, ε is referred to as the idiosyncratic part of the model, with
different observations having different random errors.

From this SLR model, suppose that we are given n independent (but not identically dis-
tributed—why?) copies of y, say y1, y2, . . . , yn, observed at x = x1, x2, . . . , xn, respectively. In
other words, we have n pairs of observations, {(xi, yi)}ni=1, where each yi is generated according to

yi = β0 + β1xi + εi, i = 1, 2, . . . , n. (1.1.2)

In spreadsheet form, the data structure can be depicted as:

Observation x y
1 x1 y1

2 x2 y2
...

...
...

n xn yn

It is expected that the response values yi’s fluctuate about their means β0 +β1xi by the random
errors εi. A plot of yi against xi is expected to exhibit a linear trend, subject to such random errors
(e.g., Figure 1.1.2).

Model assumptions. The SLR model relies on a number of assumptions, including:

A1. The yi’s are realizations of random variables, while the xi’s are nonrandom (i.e., known,
measured without error).

ivThe linear relationship is only approximate due to the presence of the random error ε.
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1.2. MODEL FITTING BY THE LEAST SQUARES METHOD 9

A2. The n random errors ε1, ε2, . . . , εn are independent with E[εi] = 0 and Var(εi) = σ2 for
all i = 1, 2, . . . , n. This, together with Assumption 1, implies that y1, y2, . . . , yn are also
independent with

E[yi] = β0 + β1xi and Var(yi) = σ2.

Note that the mean of each yi is linear in the explanatory variable x (“simple”) as well
as in the parameters β0 and β1 (“linear”), hence the term “simple linear regression.”

In the next section, we will answer the question of how the parameters β0 and β1 should be “opti-
mally” selected based on the observations (x1, y1), (x2, y2), . . . , (xn, yn).

1.2 Model Fitting by the Least Squares Method

OPTIONAL SYLLABUS READING(S)

• Frees, Sections 2.1 and 2.2

• James et al., Subsection 3.1.1

This section is devoted to the following question, which inevitably arises before the SLR model
can be put to use:

How to find the estimates β̂0, β̂1
v for β0, β1 such that the fitted regression linevi

ŷ = β̂0 + β̂1x

“best” fits the observations?

There are many criteria defining how the estimates should be optimally chosen, the most common
one in regression settings being the method of least squares.

Least squares method. As its name suggests, the least squares method consists in choosing the
estimates of β0 and β1 in order to make the sum of the vertical “squared” differences between the
observed values and the corresponding points on the fitted regression line the “least,” i.e., the least
squares estimators (LSEs) β̂0 and β̂1 are such that they minimize

SS(β0, β1) :=
n∑
i=1

[ yi︸ ︷︷ ︸
obs. value

− ( β0 + β1xi︸ ︷︷ ︸
candidate fitted value

)]2 (1.2.1)

over all candidate values β0 and β1. By calculus, the optimal solutions solve ∂
∂β0

SS(β̂0, β̂1) =
∂
∂β1

SS(β̂0, β̂1) = 0 and are given by

β̂1 =
Sxy
Sxx

=

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
and β̂0 = ȳ − β̂1x̄, (1.2.2)

vFrees denotes the estimators of β0 and β1 by b0 and b1, respectively. However, the symbols β̂0 and β̂1, adopted
by James et al., are more popular in the regression literature. SRM exam questions can use either β̂0, β̂1 or b0, b1.

viNote that the fitted regression line is not the same as the true regression line E[y] = β0 +β1x. The former serves
to estimate the latter.
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10 CHAPTER 1. SIMPLE LINEAR REGRESSION

where x̄ =
∑n

i=1 xi/n and ȳ =
∑n

i=1 yi/n are the sample means of x and y, respectively, and

Sxy :=
n∑
i=1

(xi − x̄)(yi − ȳ) =
n∑
i=1

xiyi − nx̄ȳ and Sxx :=
n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2
i − nx̄2.

Here, “S” suggests “sum” of squares of the quantities indicated in the subscript with their sample
means corrected, so Sxy returns the corrected sum of squares of x multiplied by the corrected sum
of squares of y, and Sxx gives the corrected sum of squares of x multiplied by itself.

How to calculate the least squares estimates efficiently? The calculation of the LSEs is
the first step of a regression analysis and hence can be an important exam item. There are two
ways that the LSEs can be computed by hand in an exam environment:

• Case 1: Given the raw data

You may be given the raw data {(xi, yi)}ni=1 with a relatively small sample size n (e.g., less
than 10). In this case, the two LSEs can be calculated by directly applying (1.2.2). Alterna-
tively and much more efficiently, they can also be computed by entering the data into your
financial calculator and reading the output from its statistics mode. In the case of the BA-II
Plus Professional calculator, for instance, follow these steps: (other financial calculators have
similar steps)

1. Press [2ND][DATA] (you may need to first clear the memory of the calculator by pressing
[2ND][DATA][2ND][CE/C]).

2. Enter the data values by the following keystroke:

(value of x1)[ENTER][↓](value of y1)[ENTER][↓]
...

(value of xn)[ENTER][↓](value of yn)[ENTER][↓]
(Warning: Make sure that you enter the value of x followed by the value of y! If you mix
up the order, the parameter estimates would be different; see Example 1.3.6 on page 26.)

3. Press [2ND][STAT], followed by [↓] until you see “a” and “b”.vii These are the values of
β̂0 and β̂1, respectively.

The knowledge of (1.2.2) is not required in this case!

Example 1.2.1. (SOA Course 120 November 1990 Question 6: Calculation of LSE
given raw data) You are estimating a simple regression of the form

yi = β0 + β1xi + εi

You are given:

i 1 2 3 4 5
xi 6.8 7.0 7.1 7.2 7.4
yi 0.8 1.2 0.9 0.9 1.5

viiSome write the model equation of an SLR model as y = α+ βx+ ε.
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1.2. MODEL FITTING BY THE LEAST SQUARES METHOD 11

Determine β̂1.

(A) 0.8

(B) 0.9

(C) 1.0

(D) 1.1

(E) 1.2

Solution. Following the steps above (which you should practice!), you will be able to get β̂1 =
0.9 from your financial calculator. (Answer: (B))

• Case 2: Given summarized data in the form of various sums

Instead of the full dataset, you may be given only summarized information such as the values
of

n∑
i=1

xi,
n∑
i=1

yi,
n∑
i=1

x2
i ,

n∑
i=1

y2
i ,

n∑
i=1

xiyi.

In this case, the use of (1.2.2) is necessary. To calculate the LSEs, it is most convenient to
expand the products in the two sums that appear in (1.2.2) and use the alternative form

β̂1 =

∑n
i=1 xiyi − nx̄ȳ∑n
i=1 x

2
i − nx̄2

. (1.2.3)

Example 1.2.2. (SOA Exam SRM Sample Question 17: Calculation of LSE given
various sums) The regression model is y = β0 + β1x+ ε. There are six observations.

The summary statistics are:∑
yi = 8.5,

∑
xi = 6,

∑
x2
i = 16,

∑
xiyi = 15.5,

∑
y2
i = 17.25.

Calculate the least squares estimate of β1.

(A) 0.1

(B) 0.3

(C) 0.5

(D) 0.7

(E) 0.9

Solution. As x̄ = 6/6 = 1 and ȳ = 8.5/6 = 17/12, the LSE of β1, by (1.2.3), is

β̂1 =

∑
xiyi − nx̄ȳ∑
x2
i − nx̄2

=
15.5− 6(1)(17/12)

16− 6(1)2
= 0.7 . (Answer: (D))
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12 CHAPTER 1. SIMPLE LINEAR REGRESSION

Example 1.2.3. (SOA Course 120 May 1990 Question 8: When you have a careless
assistant!) Your assistant was to estimate the parameters of a simple regression model of the
form:

y = β0 + β1x+ ε, xi = i, i = 1, . . . , 5

Your assistant determined that the parameter estimates were:

β̂0 = 7

β̂1 = 4

Later, you learned that your assistant inadvertently found the parameter estimates for the
transformed variable z = 2y − 3.

Determine the parameter estimates of the correct regression.

(A) β̂0 = 4, β̂1 = 2

(B) β̂0 = 4, β̂1 = 8

(C) β̂0 = 5, β̂1 = 2

(D) β̂0 = 5, β̂1 = 8

(E) The answer cannot be determined from the information given.

Solution. Note that zi = 2yi − 3 for i = 1, . . . , 5, and z̄ = 2ȳ − 3. The LSE of the slope when z
is regressed on x is

β̂z∼x1 =
Sxz
Sxx

=

∑
(xi − x̄)(zi − z̄)∑

(xi − x̄)2
=

2
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

= 4,

so the LSE of the slope when y is regressed on x is

β̂y∼x1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
= 2 .

Moreover, β̂z∼x0 = z̄ − β̂z∼x1 x̄ = (2ȳ − 3)− 2β̂y∼x1 x̄ = 2(ȳ − β̂y∼x1 x̄)− 3 = 7, so that

β̂y∼x0 = ȳ − β̂y∼x1 x̄ = 5 . (Answer: (C))

Remark. The fact that xi = i for i = 1, . . . , 5 is not required for solving this problem.

An alternative formula for β̂1 in terms of the sample correlation. There is another way
to express β̂1 that is less commonly seen in mainstream regression textbooks, but is stated on page
28 of Frees and comes in useful occasionally. It reads

β̂1 = r × sy
sx
,

(
Warning: Not r × sx

sy
!

)
(1.2.4)
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1.2. MODEL FITTING BY THE LEAST SQUARES METHOD 13

where

• sx and sy (with lowercase “s”) are the sample standard deviations of x and y given respectively
by

sx =
1

n− 1

n∑
i=1

(xi − x̄)2 =
Sxx
n− 1

and sy =
1

n− 1

n∑
i=1

(yi − ȳ)2 =
Syy
n− 1

.

• r is the sample correlation between x and y given by

r =
Sxy√
SxxSyy

=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
.

Formula (1.2.4) can be easily shown by writing

β̂1
(1.2.2)

=
Sxy
Sxx

=
Sxy√
SxxSyy

×
√
Syy
Sxx

= r ×
√
Syy/(n− 1)

Sxx/(n− 1)
= r × sy

sx

and is especially useful when summarized information involving the sample correlation between x
and y is given in an exam question.

Example 1.2.4. (SOA Course 120 November 1985 Question 5: Calculation of LSE
given r) You are given 30 pairs of observations (xi, yi) which are to be represented by the
following model:

y = β0 + β1x+ ε

where ε is a random error term with mean 0 and variance σ2.
You have determined:

r = 0.5

sx = 7.0

sy = 5.0

Calculate the least squares estimate of β1.
(Answer to nearest 0.1)

(A) 0.4

(B) 0.5

(C) 0.6

(D) 0.7

(E) 0.8

Solution. Using (1.2.4), we have

β̂1 = r × sy
sx

= 0.5× 5

7
= 0.3571 . (Answer: (A))

Remark. Incorrectly computing β̂1 as r × sx/sy = 0.5× 7/5 = 0.7 leads to Answer (D).
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14 CHAPTER 1. SIMPLE LINEAR REGRESSION

0

y

x

(xi, yi)

(xi, ŷi)

Slope = β̂1

fitted regression line

ŷ = β̂0 + β̂1x

yi − ŷi = ei

β̂0

xi

Figure 1.2.1: Graphical illustration of the fitted regression line and the definitions of the fitted value
and residual. The black dots denote the observed data and the square denotes the fitted value of y
at x = xi.

Fitted values and residuals. Having found the LSEs β̂0 and β̂1, we can compute, for each
observation:

• The fitted value (or predicted value) ŷi = β̂0 + β̂1xi , for i = 1, . . . , n

These values are obtained from the model equation (1.1.1) with the unknown parameters β0

and β1 replaced by the LSEs β̂0 and β̂1 and with the random error replaced by its expected
value of zero. Ideally, we would like the fitted value of each observation to be as close to the
observed value as possible.

• The residualviii ei = yi − ŷi (note: not ŷi − yi!), which captures the discrepancy between the
observed value and the fitted value

Note that residuals and the random errors are completely different entities. The former are
computable from the data (through β̂0, β̂1, xi and yi) and serve to approximate the latter,
which are unobservable. Some authors call the residuals the “observed” errors to distinguish
them from the unobservable random errors.

Figure 1.2.1 depicts the fitted regression line ŷ = β̂0 + β̂1x for a set of sample data and how the
fitted value and residual are defined for the ith observation.

Example 1.2.5. (SOA Exam SRM Sample Question 23: Calculation of fitted values
given raw data) Toby observes the following coffee prices in his company cafeteria:

• 12 ounces for 1.00

viiiThe symbol ei is used in both Frees and James et al. In our opinion, the self-explanatory symbol ε̂i is more
indicative of the role played by the residuals in approximating the unknown random errors. Nevertheless, we shall
follow the notation of Frees and James et al.
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1.2. MODEL FITTING BY THE LEAST SQUARES METHOD 15

• 16 ounces for 1.20

• 20 ounces for 1.40

The cafeteria announces that they will begin to sell any amount of coffee for a price that is the
value predicted by a simple linear regression using least squares of the current prices on size.

Toby and his co-worker Karen want to determine how much they would save each day, using
the new pricing, if, instead of each buying a 24-ounce coffee, they bought a 48-ounce coffee and
shared it.

Calculate the amount they would save.

(A) It would cost them 0.40 more.

(B) It would cost the same.

(C) They would save 0.40.

(D) They would save 0.80.

(E) They would save 1.20.

Solution. We are given (x1, y1) = (12, 1), (x2, y2) = (16, 1.2), and (x3, y3) = (20, 1.4). To
determine the fitted regression line, we can calculate β̂0 and β̂1 by (1.2.2). Alternatively and
more efficiently, we can observe that the three data points already lie on a straight line, which
in turn becomes the fitted regression line—there is no error in this case! The equation of the
line is y = 0.4 + 0.05x.

To determine the price of a 24-ounce coffee and a 48-ounce coffee, we set x = 24 and x = 48
to get, respectively, ŷ = 0.4 + 0.05(24) = 1.6 and ŷ = 0.4 + 0.05(48) = 2.8. Compared to buying
two cups of 24-ounce coffee, which costs 2(1.6) = 3.2, buying one cup of 48-ounce coffee costs
only 2.8. The amount of saving is 3.2− 2.8 = 0.4 . (Answer: (C))

Remark. If you can observe that the amount that Toby and Karen can save equals the intercept of
the fitted regression line, which is 0.4 in this case, then the above calculations can be shortened.

Example 1.2.6. (CAS Exam MAS-I Fall 2018 Question 29: Calculation of residual
given a small set of raw data) An ordinary least squares model with one variable (Adver-
tising) and an intercept was fit to the following observed data in order to estimate Sales:

Observation Advertising Sales
1 5.5 100
2 5.8 110
3 6.0 112
4 5.9 115
5 6.2 117

Calculate the residual for the 3rd observation.

(A) Less than −2
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16 CHAPTER 1. SIMPLE LINEAR REGRESSION

(B) At least −2, but less than 0

(C) At least 0, but less than 2

(D) At least 2, but less than 4

(E) At least 4

Solution. Inputting {(Advertisingi, Salesi)}5
i=1 (note: not {(Salesi,Advertisingi)}5

i=1!) into our
financial calculator, we get β̂0 = −29.1791 and β̂1 = 23.8060. Hence ŷ3 = β̂0 + 6β̂1 = 113.6567
and e3 = y3 − ŷ3 = 112− 113.6567 = −1.6567 . (Answer: (B))

Remark. If you mistakenly compute e3 as ŷ3 − y3, you will end up with Answer (C), which is
incorrect!

Sum-to-zero constraints on residuals. Whenever the SLR model is fitted by the method
of least squares, the residuals can be shown to satisfy the following sum-to-zero constraints (see
Exercises 2.14 and 2.15 of Frees):

1.
∑n

i=1 ei = 0, provided that the intercept term β0 is included in the model. This is a desirable
property because it implies that the residuals offset one another to produce a zero sum. An
implication is that the residuals are negatively correlated.

2.
∑n

i=1 xiei = 0, which is true no matter whether the intercept is present or not.

These two facts can be easily shown by realizing that β̂0 and β̂1, as the minimizer of SS(β0, β1),
satisfy

∂

∂β0

SS(β̂0, β̂1) = −2
n∑
i=1

[

ei︷ ︸︸ ︷
yi − (β̂0 + β̂1xi)] = 0,

∂

∂β1

SS(β̂0, β̂1) = −2
n∑
i=1

xi[yi − (β̂0 + β̂1xi)︸ ︷︷ ︸
ei

] = 0.

Example 1.2.7. (SOA Course 120 Study Note 120-82-97 Question 1: Given the LSE,
deduce the observation) You fit the model yi = β0 + β1xi + εi to the following data:

i 1 2 3
xi 1 3 4
yi 2 y2 5

You determine that β̂0 = 5/7.
Calculate y2.

(A) 0

(B) 1
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Runhuan Feng, Daniël Linders, Ambrose Lo
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(C) 2

(D) 3

(E) 4

Solution. First,

3∑
i=1

ei =

[
2−

(
5

7
+ β̂1

)]
+

[
y2 −

(
5

7
+ 3β̂1

)]
+

[
5−

(
5

7
+ 4β̂1

)]
= 0

7y2 − 56β̂1 = −34. (1.2.5)

Second,

3∑
i=1

xiei =

[
2−

(
5

7
+ β̂1

)]
+ 3

[
y2 −

(
5

7
+ 3β̂1

)]
+ 4

[
5−

(
5

7
+ 4β̂1

)]
= 0

21y2 − 182β̂1 = −114. (1.2.6)

Solving (1.2.5) and (1.2.6) gives y2 = 2 (and β̂1 = 6/7). (Answer: (C))

Remark. As a check, you can input {(xi, yi)}3
i=1 into your financial calculator with y2 = 2 and

see whether you can get β̂0 = 5/7.

1.3 Assessing the Goodness of Fit of the Model

OPTIONAL SYLLABUS READING(S)

• Frees, Section 2.3

• James et al., Subsections 3.1.3 and 3.2.2 (P. 75-76)

From now onward, we assume that the random errors ε1, . . . , εn are normally distributed, i.e.,

ε1, . . . , εn
i.i.d.∼ N(0, σ2) for some unknown variance σ2. While not necessary for least squares esti-

mation, this normality assumption is crucial to much of the statistical inference (e.g., constructing
confidence intervals for and testing hypotheses on regression coefficients of interest) and prediction
that follow.

1.3.1 Partitioning the Sum of Squares

Sum of squares partition. After an SLR model (and, more generally, a general linear model)
is fitted, the most pressing issue we face is to assure ourselves that the model does help us better
understand the behavior of the response variable (than the i.i.d. model) and, more importantly,
how much better. To this end, we have to check the quality of the regression fit and quantify the
strength of the relationship between the response and explanatory variables.

To begin with, note that for each observed response value yi, we have two candidate“predictions”:
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18 CHAPTER 1. SIMPLE LINEAR REGRESSION

(1) The sample mean ȳ suggested by the i.i.d. model y = β0 + ε

In the absence of the knowledge of x, the sample mean of the y-values is the best fitted value
for each yi, as we have seen in Subsection 1.1.1 (see Problem 1.6.6 on page 46 for rigorous
justification). Doing so makes yi − ȳ the departure between the ith response value yi and the
ith fitted value (under the i.i.d. model).

(2) The fitted value ŷi under the SLR model

With the knowledge of x, each yi can be predicted by the point on the fitted regression line
at x = xi, that is ŷi = β̂0 + β̂1xi. The departure between the ith response value yi and the ith
fitted value then becomes ei = yi − ŷi, which is the ith residual introduced in Section 1.2.

Intuitively, if the incorporation of x is worthwhile, then the sum of the squares of the departures
under the SLR model should be much less than that under the naive i.i.d. model. To quantify the
improvement of the SLR model over the i.i.d. model, consider the telescoping decomposition

yi − ȳ = (yi − ŷi) + (ŷi − ȳ), i = 1, . . . , n.

The left-hand side can be viewed as the ith residual of the i.i.d. model and the term yi − ŷi is the
ith residual of the fitted SLR model. Now we square both sides of the preceding equation and sum
over all i = 1, . . . , n to obtainix

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

(yi − ŷi)2 +
n∑
i=1

(ŷi − ȳ)2 + 2
n∑
i=1

(yi − ŷi)(ŷi − ȳ)︸ ︷︷ ︸
0 (see footnote)

=
n∑
i=1

(yi − ŷi)2 +
n∑
i=1

(ŷi − ȳ)2.

In summary, we get the decomposition formula for various sums of squares:

n∑
i=1

(yi − ȳ)2

︸ ︷︷ ︸
TSS

=
n∑
i=1

(yi − ŷi)2

︸ ︷︷ ︸
RSS

+
n∑
i=1

(ŷi − ȳ)2

︸ ︷︷ ︸
Reg SS

. (1.3.1)

Here, the three kinds of sums of squares are defined in Table 1.3.
The two required SRM texts, Frees and James et al., are at odds with each other in terms of how

to designate and denote the three sums of squares. The abbreviations in Table 1.3 follow James
et al. and the SRM sample questions, while Frees uses the symbols “Total SS”, “Error SS”, and

ixA direct algebraic proof for SLR goes as follows:

n∑
i=1

(yi − ŷi)(ŷi − ȳ) =

n∑
i=1

(yi − β̂0 − β̂1xi)(β̂0 + β̂1xi − ȳ)

=

n∑
i=1

[yi − ȳ − β̂1(xi − x̄)][β̂1(xi − x̄)] = β̂1Sxy − β̂2
1Sxx = 0.

This proof, however, does not carry over to a general linear model, where we do not have explicit algebraic expressions
for the individual LSEs.
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Sum of

Squares
Abbreviation Definition What Does It Measure?

Total SS TSS

Variation of the re-

sponse values about the

sample mean ȳ

Amount of variability inherent

in the response prior to per-

forming regression

Residual SS
or

Error SS

RSS

Variation of the re-

sponse values about the

fitted regression line

• Goodness of fit of the SLR
model (the lower, the better)

• Amount of variability of the

response left unexplained even

after the introduction of x

Regression SS Reg SS

Variation explained by

the SLR model (or the

knowledge of x)

How effective the SLR model is

in explaining the variation in y

Table 1.3: The three sums of squares that constitute (1.3.1).

“Regression SS” (sometimes “Regress SS”). You should be cautioned that RSS does not refer to the
regression sum of squares, but the residual sum of squares.

Back to the three sums of squares, note that as soon as the response values y1, . . . , yn have been
obtained, TSS is a characteristic that does not depend on any regression model you are using (it
does not involve any fitted values ŷi’s!); only RSS and Reg SS vary with the choice of the model.
The significance of (1.3.1) is then two-fold:

1. The residual sum of squares of a regression model (given by RSS) must be less than that of
the naive i.i.d. model (given by TSS). In other words, any SLR, no matter how useless the
explanatory variable is, must perform better than the naive i.i.d. model with respect to the
magnitude of the residual sum of squares.

2. Because TSS is kept fixed and both RSS and Reg SS are non-negative (as they are sum of
squares) and sum to TSS, the higher the Reg SS of a regression model, the lower its RSS. A
good regression model is then characterized by a large Reg SS, or equivalently, a low RSS.

Formally speaking, analysis of variance (ANOVA) is an exercise of partitioning the variation in the
sample of y-values (TSS) into the variation explained by the fitted regression model (Reg SS) and
the residual variation about the fitted line (RSS). It allows us to decide whether Reg SS is large
enough for us to declare that the SLR model is effective.

Coefficient of determination. To examine whether Reg SS is high in proportion to TSS, it is
informative to look at the coefficient of determination defined as

R2 =
Reg SS

TSS
= 1− RSS

TSS
. (1.3.2)

This ratio gives an idea of the extent to which the explanatory variable x accounts for or“determines”
the response variable y. Note that R2 is always valued between 0 and 1 (because both RSS and
Reg SS are non-negative and must be bounded by TSS) and seeks to measure the proportion of the
variation of the response variable (about its mean) that can be explained by the regression model.
The higher the value of R2, the more effective the fitted regression line is in reducing the variation
in y.
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Example 1.3.1. (SOA Exam SRM Sample Question 18: Going between TSS, RSS,
and R2) For a simple linear regression model the sum of squares of the residuals is

∑25
i=1 e

2
i = 230

and the R2 statistic is 0.64.
Calculate the total sum of squares (TSS) for this model.

(A) 605.94

(B) 638.89

(C) 690.77

(D) 701.59

(E) 750.87

Solution. By (1.3.2), we solve

0.64 = R2 = 1− RSS

TSS
= 1− 230

TSS
,

which gives TSS = 638.89 . (Answer: (B))

Specialized formulas for Reg SS and R2 under SLR. In the particular context of SLR, the
regression sum of squares takes the simple form

Reg SS =
n∑
i=1

(ŷi − ȳ)2

=
n∑
i=1

(β̂0 + β̂1xi − ȳ)2

(1.2.2)
=

n∑
i=1

[(ȳ − β̂1x̄) + β̂1xi − ȳ]2

= β̂2
1Sxx , (1.3.3)

and, as a result,

RSS = TSS− Reg SS = Syy − β̂2
1Sxx.

The ingredients used to compute the least squares estimates can therefore be recycled to determine
RSS and Reg SS in a single expression. The formula for Reg SS is presented in Exercise 2.13 (b) of
Frees and, as a result, it is possible (though not extremely likely) that exam questions are set on
the formula. If you are aiming for Grade 10 in Exam SRM, you should not hesitate to memorize it!

The formula has a surprisingly useful consequence:

In an SLR model, the coefficient of determination is simply the square of the sample
correlation coefficient between x and y.
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This follows from

R2 =
Reg SS

TSS
=
β̂2

1Sxx
Syy

(1.2.2)
=

S2
xy

SxxSyy
=

(
Sxy√
SxxSyy

)2

= r2. (1.3.4)

This fact is mentioned on page 39 and followed up in Exercise 2.13 (c) of Frees.
Note that the specialized formulas for RSS, Reg SS, and R2 above apply only to SLR.

Example 1.3.2. (SOA Course 4 Fall 2002 Question 5: Calculation of R2 given sum-
marized data) You fit the following model to eight observations:

y = β0 + β1x+ ε.

You are given:

β̂1 = 2.065∑
(xi − x̄)2 = 42∑
(yi − ȳ)2 = 182

Determine R2.

(A) 0.48

(B) 0.62

(C) 0.83

(D) 0.91

(E) 0.98

Solution. In terms of β̂1, the coefficient of determination is

R2 =
Reg SS

TSS
= β̂2

1

Sxx
Syy

= 2.0652

(
42

182

)
= 0.984052 . (Answer: (E))

Calculating ANOVA quantities using a financial calculator. If you are given a small dataset
to work with and are asked to calculate ANOVA quantities like TSS, RSS, Reg SS, and R2, you
may want to input the data into your financial calculator and use its built-in functions to speed up
your work. After inputting the data {(xi, yi)}ni=1 into the calculator, press [2ND][STAT] and you
can find, among other statistics:

• The values of the sample standard deviations of x and y denoted by “Sx” and “Sy”

• The empirical (with division by n instead of n − 1) standard deviations of x and y denoted
by “σx” and “σy”
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• The sample correlation between x and y denoted by “r”

By (1.3.4), we can compute the coefficient of determination almost effortlessly as R2 = r2 (don’t
forget to square!) and the total sum of squares as

TSS = (n− 1)s2
y or nσ2

y.

In view of the definitions of RSS and Reg SS, they can be calculated in terms of R2 and TSS as

RSS = TSS(1−R2) and Reg SS = TSS(R2).

Now try the following example and see how much work the built-in functions of your calculator can
save for you.

Example 1.3.3. (SOA Course 4 2000 Sample Exam Question 29: Calculation of R2

given raw data) You wish to determine the nature of the relationship between sales (y) and
the number of radio advertisements broadcast (x). Data collected on four consecutive days is
shown below.

Number of Radio
Day Sales Advertisements

1 10 2
2 20 2
3 30 3
4 40 3

Using the method of least squares, you determine the estimated regression line:

ŷ = −25 + 20x

Determine the value of R2 for this model.

(A) .70

(B) .75

(C) .80

(D) .85

(E) .90

Solution 1 (By definition). The fitted values are

ŷ1 = ŷ2 = −25 + 20(2) = 15 and ŷ3 = ŷ4 = −25 + 20(3) = 35.

The residual sum of squares is

RSS = (−5)2 + 52 + (−5)2 + 52 = 100.
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As ȳ = 100/4 = 25, the total sum of squares is

TSS = (−15)2 + (−5)2 + 52 + 152 = 500.

Hence

R2 = 1− RSS

TSS
= 1− 100

500
= 0.8 . (Answer: (C))

Solution 2 (Square of r). Inputting the four pairs of (x, y) into a financial calculator, we can
get the sample correlation coefficient r = 0.894427. Then R2 = r2 = 0.8 . (Answer: (C))

Remark. Forgetting to square and taking r = 0.894427 as the final answer would lead to Option
(E).

ANOVA table. It is customary and convenient to tabulate the partitioning of the sum of squares
using an ANOVA table. For an SLR model, the ANOVA table looks like:

Source Sum of Squares df Mean Square F -value

Regression Reg SS 1 Reg SS/1 ?

Error RSS n− 2 s2 = RSS/(n− 2)

Total TSS n− 1

Here are the features of an ANOVA table:

• Bottom item = sum of items above in the same column

• Each sum of squares (SS) accounts for a source of variation in y

• Each SS is associated with a degree of freedom (df ). Here are some “informal” rules for
counting df :

� TSS represents n deviations from the sample mean ȳ, which estimates the population
mean µ, and one df is lost from n in the process.

� Likewise, RSS represents n deviations from the fitted regression line, which has two
estimated parameters β̂0 and β̂1, and possesses n− 2 df.

� Reg SS has the leftover df : (n−1)− (n−2) = 1, corresponding to the single explanatory
variable x.

� The sum of the df of RSS and Reg SS must equal the df of TSS, which is n− 1.

• Dividing an SS by its df results in a mean square (MS). In particular, dividing RSS by n− 2
yields the mean square error (MSE)

s2 =
RSS

n− 2
=

∑n
i=1 e

2
i

n− 2
,
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which can be shown to be an unbiased estimator of the unknown error variance σ2. The
positive square root, s =

√
s2, is known as the residual standard deviation (see page 34 of

Frees) or residual standard error, or RSE for short (see page 66 of James et al.).

• The “F -value” column will be explained in the next subsection.

Example 1.3.4. (SOA Course 120 Study Note 120-81-95 Question 2: Calculation of
R2 from RSS and TSS) You use simple linear regression and have observed the following five
values of the dependent variable, y:

1, 2, 3, 4, 5.

You determine that s2 = 1.
Calculate R2.

(A) 0.1

(B) 0.3

(C) 0.5

(D) 0.6

(E) 0.7

Solution. As s2 = RSS/(5− 2), we have RSS = 3(1) = 3. With ȳ = 3,

TSS =
5∑
i=1

(yi − ȳ)2 = (1− 3)2 + (2− 3)2 + (3− 3)2 + (4− 3)2 + (5− 3)2 = 10,

or, using a financial calculator,

TSS = 5(1.414214)2 = 10.

It follows that

R2 = 1− RSS

TSS
= 1− 3

10
= 0.7 . (Answer: (E))

1.3.2 F -test

F -statistic: Definition. The F -testx is a formal statistical test to judge whether Reg SS is large
enough for us to declare the usefulness of the fitted SLR model, with respect to explaining the

xIn the required portions of the two SRM texts, the F -test is discussed only in James et al. in the context of
multiple linear regression models (see Chapter 2 of this manual). This is a somewhat awkward and unfortunate
arrangement.
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variation in the response y. The formal hypotheses are

H0 : β1 = 0︸ ︷︷ ︸
i.i.d. model

vs Ha : β1 6= 0︸ ︷︷ ︸
SLR model

,

and can be assessed by means of the F -statistic defined by

F =
Reg SS/1

RSS/(n− 2)
,

which is a by-product of the last column of the ANOVA table.

In this study manual, we content ourselves with the following facts (rigorous proofs require deep
statistical theory!):

• Under H0, the F -statistic has an F1,n−2 distribution, i.e., an F -distribution with 1 and n− 2

degrees of freedom. Its expected value is close to one. Here the two degrees of freedom are
inherited from those of Reg SS and RSS, or the third column of the ANOVA table.

(Forgot what an F -distribution is? Refer to your mathematical statistics textbook!)

• If H0 is not true, then the F -statistic tends to take a value which is much higher than what
an F1,n−2 random variable typically assumes.

Based on the F -statistic, the decision rule is:

At a fixed significance level of α, we reject H0 in favor of Ha and conclude that the
SLR model is significantly better than the i.i.d. model (or equivalently, the explanatory
variable x is statistically significant) using the following two equivalent ways:

• Critical value approach: The observed value of the F -statistic is greater than
F1,n−2,α, which is the α-upper quantile of the F -distribution with 1 and n − 2
degrees of freedom, i.e., P(F1,n−2︸ ︷︷ ︸

r.v.

> F1,n−2,α︸ ︷︷ ︸
quantile

) = α.

• p-value approach: The p-value P(F1,n−2 > f), where f is the observed value of F ,
is less than α.

(Note: Recall from your VEE Mathematical Statistics course that the p-value of a
hypothesis test is the probability of observing a value of the test statistic as extreme as
or more extreme than the observed value, under the null hypothesis. It is a measure,
on the scale from 0 to 1, of the strength of the evidence against H0 in favor of Ha; the
smaller the p-value, the stronger the evidence we have. At a fixed significance level α,
we reject H0 in favor of Ha when the p-value is less than α. Equivalently, the p-value is
the smallest significance level at which the null hypothesis would be rejected.)

To our astonishment, the SRM tables do not include one for the F -distribution. Accordingly, if
there are any questions in the SRM exam concerning the F -test, the focus should be on calculating
the F -statistic. An exam question will need to provide you with the F -quantiles to proceed further.
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F -statistic in terms of R2. One can, if needed, equivalently describe the F -statistic in terms
of the coefficient of determination R2. To this end, we connect the F -statistic and R2 by dividing
the numerator and denominator of the former by TSS, yielding

F = (n− 2)

(
Reg SS/TSS

RSS/TSS

)
= (n− 2)

(
R2

1−R2

)
. (1.3.5)

There is no need for memorizing this alternative form of the F -statistic. Just remember the trick:

Divide both the numerator and denominator of the F -statistic by TSS.

An added merit of (1.3.5) is that because R2 can be easily calculated from raw data as the square
of the sample correlation, we can also readily compute the F -statistic from raw data—there is no
need to deal with ANOVA quantities like RSS, Reg SS, and TSS at all.

Example 1.3.5. (SOA Course 4 Spring 2000 Question 1: Calculation of the F -
statistic from R2) You fit the following model to 20 observations:

y = β0 + β1x+ ε.

You determine that R2 = 0.64.
Calculate the value of the F statistic used to test for a linear relationship.

(A) Less than 30

(B) At least 30, but less than 33

(C) At least 33, but less than 36

(D) At least 36, but less than 39

(E) At least 39

Solution. Given the value of R2, the value of the F statistic, by (1.3.5), is

F = (n− 2)

(
R2

1−R2

)
= (20− 2)

(
0.64

1− 0.64

)
= 32 . (Answer: (B))

Example 1.3.6. [HARDER!] (Regressing y on x vs. regressing x on y) Two actuaries
are analyzing the same dataset involving a pair of variables (x, y). You are given:

(i) Actuary P fits a simple linear regression model by regressing y on x.

(ii) Actuary Q fits a simple linear regression model by regressing x on y.

Determine which of the following statements about the two models must be true.
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I. The estimated slope coefficient of Actuary P’s model is the reciprocal of that of Actuary
Q’s model.

II. The two models have the same value of the coefficient of determination.

III. The two models have the same value of the F -statistic for testing for the significance of
the explanatory variable.

(A) None

(B) I and II only

(C) I and III only

(D) II and III only

(E) The correct answer is not given by (A), (B), (C), or (D).

Solution. I. False. The two estimated β1’s are generally not the inverse of each other. To see
this, let’s write β̂y∼x1 and β̂x∼y1 for the LSEs of the slope coefficient in Actuary P’s model
(y is regressed on x) and Actuary Q’s model (x is regressed on y), respectively. By (1.2.4),
we have

β̂y∼x1 × β̂x∼y1 =

(
r × sy

sx

)(
r × sx

sy

)
= r2 (1.3.4)

= R2,

Thus β̂y∼x1 6= 1/β̂x∼y1 , unless R2 = 1.

II. True. This is because in the SLR setting, R2 equals the square of the sample correla-
tion coefficient between x and y (recall (1.3.4)), whose value remains unchanged if we
interchange the role of x and y.

III. True. This follows from Statement II and (1.3.5). (Answer: (D))

Remark. Statement I is motivated by Exercise 2.6 of Frees.

1.4 Statistical Inference about Regression Coefficients

OPTIONAL SYLLABUS READING(S)

• Frees, Section 2.4 to Subsection 2.5.2

• James et al., Subsection 3.1.2

In SLR analysis, the regression parameters β0 and β1 are of primary interest (σ2, though un-
known, is of secondary importance). The slope parameter β1 is particularly important because it
quantifies the direct influence of the explanatory variable x on the response y. The LSEs β̂0 and
β̂1 provide point estimates for the parameters, but would vary from sample to sample and not be
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informative unless accompanied by a standard error to quantify uncertainty. To assess the accuracy
of the LSE and draw further inference about β0 and β1, the sampling distributions of β̂0 and β̂1 are
warranted.

1.4.1 Sampling Distributions of LSEs

Linear combination formulas. To explore the distributions of β̂0 and β̂1, it may be convenient
to express them as a linear combination of the response values yi’s. For β̂1, the representation is

β̂1 =
Sxy
Sxx

=

∑n
i=1(xi − x̄)yi

Sxx
− ȳ

∑n
i=1(xi − x̄)

Sxx︸ ︷︷ ︸
0

=

∑n
i=1(xi − x̄)yi

Sxx
,

or

β̂1 =
n∑
i=1

wiyi, where wi =
xi − x̄
Sxx

for i = 1, 2, . . . , n. (1.4.1)

Note that the weights satisfy
∑n

i=1wi = 0,
∑n

i=1wixi = 1, and
∑n

i=1w
2
i = 1/Sxx.

An analogous weighted sum formula exists for β̂0, which is the content of Exercise 2.4 of Frees:

β̂0 =
n∑
i=1

wi,0yi, where wi,0 =
1

n
− x̄wi for i = 1, 2, . . . , n.

This formula can be derived easily from (1.4.1):

β̂0
(1.2.2)

= = ȳ − β̂1x̄
(1.4.1)

=
1

n

n∑
i=1

yi − x̄
n∑
i=1

wiyi =
n∑
i=1

(
1

n
− x̄wi

)
︸ ︷︷ ︸

wi,0

yi.

The following example, adapted from an old SOA exam problem, shows how the computations
of the weights can be tested. Perhaps to your astonishment, calculating these weights requires more
work than simply calculating β̂0 and β̂1.

Example 1.4.1. (SOA Course 4 Fall 2001 Question 13 (Adapted): LSE as a weighted
average of response values) You fit the following simple linear regression model to four
observations:

yi = β0 + β1xi + εi, i = 1, 2, 3, 4

You are given:

i xi
1 −3
2 −1
3 1
4 3

The least squares estimator of β1 can be expressed as β̂1 =
∑4

i=1wiyi.
Determine (w1, w2, w3, w4).
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(A) (−0.15,−0.05, 0.05, 0.15)

(B) (−0.05, 0.15,−0.15, 0.05)

(C) (−0.15, 0.05,−0.05, 0.15)

(D) (−0.30,−0.10, 0.10, 0.30)

(E) (−0.10, 0.30,−0.30, 0.10)

Solution. As x̄ = 0,

wi =
xi − x̄
Sxx

=
xi∑4
i=1 x

2
i

=
xi
20
,

so
w1 = −0.15, w2 = −0.05, w3 = 0.05, w4 = 0.15. (Answer: (A))

Expectations and variances of LSEs. Because y1, . . . , yn are independent normal random
variables, a direct consequence of the linear combination formulas above is that β̂0 and β̂1 are
normally distributed. Furthermore, taking expectations and variances of the formulas allows us to
determine the expected values and variances of β̂0 and β̂1:

• Expectations: β̂0 and β̂1 are unbiased estimators of β0 and β1, respectively, i.e., E[β̂j] = βj for
j = 0, 1.

• Variances: The variances of β̂0 and β̂1 are

Var(β̂0) = σ2

(
1

n
+

x̄2

Sxx

)
=
σ2
∑n

i=1 x
2
i

nSxx
and Var(β̂1) =

σ2

Sxx
.

Note that these variances involve the unknown parameter σ2, which can be estimated unbi-
asedly by the MSE s2, leading to the following estimated variances:

V̂ar(β̂0) = s2

(
1

n
+

x̄2

Sxx

)
=
s2
∑n

i=1 x
2
i

nSxx
and V̂ar(β̂1) =

s2

Sxx
. (1.4.2)

The estimated standard deviations of β̂0 and β̂1, denoted by SE(β̂0) and SE(β̂1), respectively,
are called their standard errors :

SE(β̂0) =

√
s2

(
1

n
+

x̄2

Sxx

)
=

√
s2
∑n

i=1 x
2
i

nSxx
and SE(β̂1) =

√
s2

Sxx
. (1.4.3)

These are measures of the reliability, or precision, of the LSEs. Observe from (1.4.3) that the
standard errors of both β̂0 and β̂1 are increasing in s2 but decreasing in Sxx. Therefore, other
things being equal, the standard errors will be smaller if the observations exhibit a greater
tendency to lie closer to the fitted regression line (so that s2 is smaller), and if the observed
values of the explanatory variable are more spread out (so that Sxx is larger).

Copyright © 2019 ACTEX Learning ACTEX Study Manual for Exam SRM (May 2019 Edition)
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EXAM NOTE

Even though (1.4.1), (1.4.2), and (1.4.3) can be derived as special cases
of general results in linear regression models you will learn in the next
chapter, it is suggested that you memorize these formulas as deriving
them from first principles takes considerable time.

Example 1.4.2. (SOA Course 4 Spring 2001 Question 40: Standard error of β̂1) For
a two-variable regression based on seven observations, you are given:

(i)
∑

(xi − x̄)2 = 2000

(ii)
∑
e2
i = 967

Calculate the standard error of β̂1.

(A) 0.26

(B) 0.28

(C) 0.31

(D) 0.33

(E) 0.35

Solution. From (ii), the MSE is s2 = RSS/(n− 2) = 967/(7− 2) = 193.4. By (1.4.3),

SE(β̂1) =

√
s2

Sxx
=

√
193.4

2, 000
= 0.3110 . (Answer: (C))

1.4.2 Hypothesis Tests and Confidence Intervals

t-test. Armed with the distributional results in the preceding subsection, we are now in a position
to formulate hypothesis tests on the regression coefficients in the form of H0 : βj = d,xi where d
is a user-specified hypothesized value, for j = 0 or 1. The hypothesis test of greatest interest is
arguably H0 : β1 = 0 (i.e., j = 1 and d = 0), in which case the SLR model no longer includes the
explanatory variable x. Such a hypothesis test therefore allows us to examine the importance of x
using tools in the hypothesis testing framework.

To gauge the plausibility of the general null hypothesis H0 : βj = d, we examine the proximity

xiNever write H0 : β̂j = d, that is, never state the hypothesis in terms of estimators, which are random variables.

Our interest is in the unknown parameter βj , not the LSE β̂j .

Copyright © 2019 ACTEX Learning ACTEX Study Manual for Exam SRM (May 2019 Edition)
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Alternative Hypothesis Ha Decision Rule p-value (t is the observed value of t(β̂j))

βj 6= d |t(β̂j)| > tn−2,α/2 P(|tn−2| > |t|) = 2P(tn−2 > |t|)
βj > d t(β̂j) > tn−2,α P(tn−2 > t)

βj < d t(β̂j) < −tn−2,α P(tn−2 < t)

Table 1.4: Decision-making procedures for testing H0 : βj = d against various alternative hypotheses
by means of a t-test.

of β̂j to d, scaled by the standard error of β̂j, via the t-statistic (or t-ratio) defined by

t(β̂j) =
LSE− hypothesized value

standard error of LSE
=
β̂j − d
SE(β̂j)

, j = 0, 1,

where the denominator is given in (1.4.3). The reason why t(β̂j) is known as the t-statistic is that

under H0, it can be shown that t(β̂j) follows a t-distribution with n− 2 degrees of freedomxii, i.e.,

t(β̂j)
H0∼ tn−2.

This forms the basis for the formulation of decision rules for given significance level α, and the
computation of p-values for various alternative hypotheses, as shown in Table 1.4. Here, we denote
by tn−2,α the α-upper percentile from the t-distribution with n− 2 degrees of freedom, that is

P( tn−2︸︷︷︸
random variable

≥ tn−2,α︸ ︷︷ ︸
upper percentile

) = α.

To make sense of the decision rule and the formula for the p-value in Table 1.4, consider, for
instance, testing H0 against the one-sided alternative Ha : βj > d. To see what values of the
t-statistic constitute evidence against H0 in support of Ha, we write

t(β̂j) =
β̂j − d
SE(β̂j)

=
β̂j −

true parameter︷︸︸︷
βj

SE(β̂j)︸ ︷︷ ︸
∼tn−2 (always)

+
βj −

hypothesized value︷︸︸︷
d

SE(β̂j)︸ ︷︷ ︸
> 0 (under Ha:βj>d)

.

This seemingly unnecessary way of writing reveals that if the alternative hypothesis is true, then
the t-statistic tends to take an observed value which is systematically larger than what a tn−2

distribution typically assumes. Therefore, a large t-statistic value is evidence against H0 in favor of
Ha. Similar considerations can be used to justify the decision rule and the formula for the p-value for
Ha : βj 6= d (extremely big or extremely small values are against H0 in favor of Ha) and Ha : βj < d
(small values are against H0 in favor of Ha).

In the SRM exam, you may be asked to calculate the value of the t-statistic and, based on which,
decide whether to accept or reject H0 given a significance level α. For the latter task, you will need
the upper quantiles of the tn−2-distribution, which you can obtain from the t-table provided in the
SRM exam. Part of the table reads:

xiiIn the language of mathematical statistics, the t-statistic t(β̂j) is a pivotal quantity. It is a function of the
unknown parameter βj but has a distribution which is free of βj .

Copyright © 2019 ACTEX Learning ACTEX Study Manual for Exam SRM (May 2019 Edition)
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df t0.100 t0.050 t0.025 t0.010 t0.005

1 3.0777 6.3138 12.7062 31.8205 63.6567
2 1.8856 2.9200 4.3027 6.9646 9.9248
...

...
...

...
...

...

For example, t2,0.025 = 4.3027.

Example 1.4.3. (SOA Course 4 Fall 2003 Question 5: Calculation of t-statistic) For
the model yi = β0 + β1xi + εi, where i = 1, 2, . . . , 10, you are given:

(i) xi =

{
1, if the ith individual belongs to a specified group 0

0, otherwise

(ii) 40 percent of the individuals belong to the specified group.

(iii) The least squares estimate of β1 is β̂1 = 4.

(iv)
∑

(yi − β̂0 − β̂1xi)
2 = 92

Calculate the t-statistic for testing H0 : β1 = 0.

(A) 0.9

(B) 1.2

(C) 1.5

(D) 1.8

(E) 2.1

Solution. To calculate the t-statistic, we need the estimated variance or standard error of β̂1.
From (iv), s2 = RSS/(n−2) = 92/(10−2) = 11.5. With x̄ = 4/10 = 0.4, the estimated variance
of β̂1 is

V̂ar(β̂1) =
s2

Sxx
=

11.5

4(1− 0.4)2 + 6(−0.4)2
=

115

24
.

The t-statistic for testing H0 : β1 = 0 is

t(β̂1) =
β̂1

SE(β̂1)
=

4√
115/24

= 1.8273 . (Answer: (D))

Remark. (i) Since t8,0.1 = 1.3968 and t8,0.05 = 1.8595, the p-value of the test (against the
two-sided alternative Ha : β1 6= 0) is between 2(0.05) = 0.1 and 2(0.1) = 0.2.

(ii) The explanatory variable x here is an example of a binary variable; see Subsection 2.3.1.
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Confidence intervals for regression coefficients. The fact that t(β̂j)
H0∼ tn−2, besides under-

lying the t-test above, can also be exploited to construct confidence intervals for the two regression
coefficients β0 and β1. Starting with the probability statement

P

 −tn−2,α/2︸ ︷︷ ︸
(by symmetry)

<
β̂j − βj
SE(β̂j)

< tn−2,α/2

 = 1− α

and making the unknown parameter βj the subject of the event on the left-hand side, we have

P
(
β̂j − tn−2,α/2 × SE(β̂j) < βj < β̂j + tn−2,α/2 × SE(β̂j)

)
= 1− α.

This shows that a 100(1− α)% confidence interval for βj
xiii takes the easy-to-remember form:

LSE± t-quantile× Standard error = β̂j ± tn−2,α/2 × SE(β̂j),

where again the standard error is given in (1.4.3). For the t-quantile, make sure that you use α/2
as the probability level due to the equal-tailed nature of the confidence interval, i.e., the probability
that βj exceeds the upper bound of the confidence interval and the probability that βj is less than
the lower bound are both equal to α/2.

Example 1.4.4. (SOA Course 4 Fall 2002 Question 38: Confidence interval for β0)
You fit a two-variable linear regression model to 20 pairs of observations.

You are given:

(i) The sample mean of the independent variable is 100.

(ii) The sum of squared deviations from the mean of the independent variable is 2266.

(iii) The ordinary least-squares estimate of the intercept parameter is 68.73.

(iv) The error sum of squares is 5348.

Determine the lower limit of the symmetric 95% confidence interval for the intercept parameter.

(A) −273

(B) −132

(C) −70

(D) −8

(E) −3

xiiiNever say a 100(1− α)% confidence interval for β̂j !
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Solution. We need the standard error of β̂0. As s2 = RSS/(n− 2) = 5, 348︸ ︷︷ ︸
(iv)

/(20− 2) = 2, 674/9,

the estimated variance of β̂0, by (1.4.2), is

V̂ar(β̂0) = s2

(
1

n
+

x̄2

Sxx

)
=

2, 674

9

(
1

20
+

1002

2, 266

)
= 1, 326.0255.

The lower limit of the symmetric 95% confidence interval for β0 is

68.73︸ ︷︷ ︸
(iii)

− t18,0.025︸ ︷︷ ︸
2.1009

√
1, 326.0255 = −7.77 . (Answer: (D))

Example 1.4.5. (SOA Course 4 Fall 2001 Question 5: Confidence interval for β1 –
I) You fit the following model to eight observations:

y = β0 + β1x+ ε.

You are given:

β̂1 = −35.69∑
(xi − x̄)2 = 1.62∑
(yi − ŷi)2 = 2394

Determine the symmetric 90-percent confidence interval for β1.

(A) (−74.1, 2.7)

(B) (−66.2,−5.2)

(C) (−63.2,−8.2)

(D) (−61.5,−9.9)

(E) (−61.0,−10.4)

Solution. The MSE is s2 = RSS/(n − 2) = 2, 394/(8 − 2) = 399. By (1.4.2), the estimated
variance of β̂1 is

V̂ar(β̂1) =
s2

Sxx
=

399

1.62
= 246.2963.

The symmetric 90% confidence interval for β1 is

β̂1 ± t6,0.05

√
V̂ar(β̂1) = −35.69± 1.9432

√
246.2963 = (−66.18,−5.20) . (Answer: (B))
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Example 1.4.6. (CAS Exam ST Fall 2014 Question 20: Confidence interval for β1 –
II) For the linear model yi = β0 + β1xi + εi, you are given:

• n = 6

• β̂1 = 4

•
∑n

i=1(xi − x̄)2 = 50

•
∑n

i=1(yi − ȳ)2 − β̂1

∑n
i=1(xi − x̄)(yi − ȳ) = 25

Calculate the upper bound of the 95% confidence interval for β1.

(A) Less than 5.1

(B) At least 5.1, but less than 5.3

(C) At least 5.3, but less than 5.5

(D) At least 5.5, but less than 5.7

(E) At least 5.7

Solution. We are given in the fourth point that

Syy − β̂1Sxy
(1.2.2)

= TSS− β̂1(β̂1Sxx) = TSS− Reg SS = RSS = 25.

Thus the MSE is s2 = RSS/(n − 2) = 25/(6 − 2) = 6.25 and the upper bound of the 95%
confidence interval for β1 is

β̂1 + t4,0.025 ×
√

s2

Sxx
= 4 + 2.7764×

√
6.25

50
= 4.9816 . (Answer: (A))

[HARDER!] Relationship between F -test and t-test for H0 : β1 = 0. Thus far, we have
introduced two ways to test H0 : β1 = 0:

1. By the F -test in Section 1.3, with test statistic

F =
Reg SS/1

RSS/(n− 2)
.

2. By the t-test in this section, with test statistic

t(β̂1) =
β̂1 − 0

SE(β̂1)
=

β̂1√
s2/Sxx

.

Do these two hypothesis tests always give the same conclusion?
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F -test t-test
1. More convenient for testing

whether β1 = 0.
Equally convenient for testing
whether β1 equals any hypothesized
value, e.g., β1 = 2.5.

2. The alternative hypothesis is
usually two-sided, e.g., Ha : β1 6= 0.

The alternative hypothesis can be
two-sided or one-sided, e.g,
Ha : β1 > 0.

Table 1.5: Differences between the F -test and t-test for testing H0 : β1 = 0.

It turns out that there is an intimate relationship between these two statistical tests. Specifically,
the t-statistic and the F -statistic enjoy a one-to-one relationship given by

t(β̂1)2 =
β̂2

1

s2/Sxx
=
β̂2

1Sxx
s2

(1.3.3)
=

Reg SS/1

RSS/(n− 2)
= F.

Together with the distributional equality t2v = F1,v for any v ≥ 0 (a more subtle fact you may
have seen in your VEE Mathematical Statistics class), the t-test and F -test indeed have the same
rejection region and are equivalent ways of testing H0 : β1 = 0 against Ha : β1 6= 0.

Table 1.5 summarizes the differences between the F -test and t-test for testing H0 : β1 = 0.

Example 1.4.7. (SOA Course 120 Study Note 120-83-96 Question 2: Given ANOVA
output, find the t-statistic) You fit the simple linear regression model to 47 observations
and determine ŷ = 1.0 + 1.2x. The total sum of squares (corrected for mean) is 54, and the
regression sum of squares is 7.

Determine the value of the t-statistic for testing H0 : β1 = 0 against Ha : β1 6= 0.

(A) 0.4

(B) 1.2

(C) 2.2

(D) 2.6

(E) 6.7

Solution. The value of the F -statistic for testing H0 : β1 = 0 against Ha : β1 6= 0 is

F =
Reg SS/1

RSS/(n− 2)
=

7/1

(54− 7)/(47− 2)
=

315

47
.

The value of the t-statistic for the same hypotheses is the positive square root of F (we take the
positive root because β̂1 = 1.2 > 0; note that β̂1 and t(β̂1) share the same sign), or

t(β̂1) =
√

315/47 = 2.5889 . (Answer: (D))
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Remark. Here is a solution without using the fact that t(β̂1)2 = F :

As RSS = 54 − 7 = 47, the MSE is s2 = 47/45. For SLR, Reg SS = β̂2
1Sxx, so

Sxx = 7/1.22 = 4.861111. Then

t(β̂1) =
β̂1

SE(β̂1)
=

1.2√
(47/45)/4.861111

= 2.5889.

1.5 Prediction

OPTIONAL SYLLABUS READING(S)

• Frees, Subsection 2.5.3

• James et al., Section 3.2, P. 81-82

Prediction vs. estimation. Now that statistical inference has been settled in the preceding
section, we consider in this section a problem in a similar vein, that is, to predict the response
variable y when the explanatory variable is set at some known value, say x∗. Note that a prediction
problem is fundamentally different from the previous estimation problem in the sense that we are
now interested in a random individual response, say y∗, in contrast to an unknown parameter βj.
The variability stemming from the random nature of y∗ needs to be specifically taken into account
in the prediction procedure, especially when formulating prediction intervals. Because of this extra
degree of variability, prediction is generally less precise than estimation with a bigger standard error.

Setting. The following diagram visualizes the prediction problem of interest:

response known values of explanatory variables
y x
y1 x1

observed
(past) data

y2 x2
...

...
yn xn

Unobserved
(future) data

y∗
(target)

← x∗

Two assumptions are typically necessary for the validity of our prediction procedure:

1. The future, yet-to-be-realized response value y∗ is subject to the same data-generating mecha-
nism (i.e., the SLR model) that governs the currently available observations
(x1, y1), (x2, y2), . . . , (xn, yn). Mathematically, we have y∗ = β0 + β1x∗ + ε∗, where

β0 and β1 are the (unknown) parameters in the same SLR model,

x∗ is the x-value of interest, and
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ε∗ is the normal error term that underlies y∗.

The fact that y∗ comes from the same SLR model allows us to make use of the information
about the model based on the realized observations, particularly the estimates of β0, β1, σ

2.

2. The future error term ε∗ and the past error terms ε1, . . . εn are independent. This is equivalent
to the independence between the future response y∗ and the past response values y1, . . . , yn.
This independence assumption is crucial to decomposing the variance of the prediction error
into two distinguishing parts, as will be shown below.

Prediction intervals. Given the LSEs β̂0 and β̂1, a sensible point predictor of y∗ = β0 +β1x∗+ε∗
is obtained by replacing β0, β1, ε∗ by β̂0, β̂1, 0, respectively:

ŷ∗ = β̂0 + β̂1x∗.

As soon as the data values are observed, β̂0 and β̂1 can be readily computed to yield a single
point prediction. To provide a range of reliability, it is often informative to accompany the point
prediction with an interval prediction enclosing y∗ with a specified probability.

The construction of such an interval prediction is a more complicated task. To this end, we look
at the sampling distribution of the prediction error y∗− ŷ∗, which can be decomposed algebraically
as

y∗︸︷︷︸
future (random)

− ŷ∗︸︷︷︸
past

= ε∗︸︷︷︸
deviation inherent in y∗

+ [(β0 + β1x∗)− (β̂0 + β̂1x∗)]︸ ︷︷ ︸
error in estimating the regression line at x∗

.

Because ŷ∗ is calculated from the observed past data but y∗ relates only to the unobserved future
response, ŷ∗ and y∗ are independent and follow their respective normal distributions. It follows that
the prediction error is also normally distributed with mean

E[y∗ − ŷ∗] = (β0 + β1x∗)− (β0 + β1x∗) = 0,

i.e., our point predictor ŷ∗ is accurate on average, and with variance

Var(y∗ − ŷ∗) = Var(ε∗) + Var(β̂0 + β̂1x∗)

=
...

= σ2

[
1 +

1

n
+

(x∗ − x̄)2

Sxx

]
,

i.e.,

y∗ − ŷ∗ ∼ N

(
0, σ2

[
1 +

1

n
+

(x∗ − x̄)2

Sxx

])
.

Upon estimating σ2 unbiasedly by s2, the standard error of predictionxiv is

SE(y∗ − ŷ∗) =

√
s2

[
1 +

1

n
+

(x∗ − x̄)2

Sxx

]
, (1.5.1)

xivThis is the formula stated at the bottom of page 40 of Frees without proof. Note that the standard error of
prediction does not equal the standard error of ŷ∗ because our target y∗ itself is also random.
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and upon studentization, we have
y∗ − ŷ∗

SE(y∗ − ŷ∗)
∼ tn−2.

With this distributional result, a 100(1− α)% prediction intervalxv for y∗ is

ŷ∗ ± tn−2,α/2 × SE(y∗ − ŷ∗) = (β̂0 + β̂1x∗)± tn−2,α/2

√
s2

[
1 +

1

n
+

(x∗ − x̄)2

Sxx

]
. (1.5.2)

Example 1.5.1. (SOA Course 120 May 1991 Question 7: Estimated variance of
prediction error) You are representing 10 pairs of observations (xi, yi) by the following model:

y = β0 + β1x+ ε,

where ε is a random error term with mean 0 and variance σ2.
You have determined:

10∑
i=1

xi = 50

10∑
i=1

x2
i = 750

s2 = 100

Calculate the estimated variance of the predicted value of y when x = 10.

(A) 100

(B) 105

(C) 110

(D) 115

(E) 120

Comments: The phrase “estimated variance of the predicted value of y” is misleading. Literally it
means V̂ar(ŷ∗). What the question really requests is the estimated variance of the“prediction error.”

Solution. With Sxx =
∑
x2
i −nx̄2 = 750−10(5)2 = 500, the estimated variance of the prediction

error for x = 10 is

s2

[
1 +

1

n
+

(x∗ − x̄)2

Sxx

]
= 100

[
1 +

1

10
+

(10− 5)2

500

]
= 115 . (Answer: (D))

xvA 100(1 − α)% prediction interval for a random variable Y is defined to be a random interval [A,B] such that
P(A ≤ Y ≤ B) = 1 − α. Parenthetically, a 100(1 − α)% confidence interval for E[y∗] = β0 + β1x∗ is obtained by
replacing SE(y∗ − ŷ∗) by SE(ŷ∗), treating as if your target y∗ has no variability.
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Example 1.5.2. (SOA Course 120 Study Note 120-83-96 Question 3: Width of a
prediction interval) You fit the model yi = β0 + β1xi + εi to 10 observed values (xi, yi).

You determine: ∑
(yi − ŷi)2 = 2.79∑
(xi − x̄)2 = 180∑
(yi − ȳ)2 = 152.40

x̄ = 6

ȳ = 7.78

Determine the width of the shortest symmetric 95% prediction interval for y when x = 8.

(A) 0.9

(B) 1.3

(C) 1.5

(D) 1.7

(E) 2.9

Solution. The MSE is

s2 =
RSS

n− 2
=

2.79

10− 2
= 0.34875.

The width of the 95% prediction interval for y when x = 8 is

2t8,0.025

√
s2

[
1 +

1

n
+

(x∗ − x̄)2

Sxx

]
= 2(2.3060)

√
0.34875

[
1 +

1

10
+

(8− 6)2

180

]
= 2.8853 . (Answer: (E))

Remark. The values of
∑

(yi − ȳ)2 and ȳ are not needed.

Some remarks on the structure of the prediction interval. Although the formula for the
prediction interval above looks formidable, you can make sense of its structure by looking at the
expression of the estimated variance of the prediction, which is

V̂ar(y∗ − ŷ∗) = s2︸ ︷︷ ︸
1©

+ s2

[
1

n
+

(x∗ − x̄)2

Sxx

]
︸ ︷︷ ︸

2©

. (1.5.3)

Loosely speaking, there are two sources of uncertainty associated with prediction:

1. Estimation of the true regression line at x∗: The LSEs β̂0 and β̂1 are only estimates of β0

and β1, and are subject to sampling fluctuations. The intrinsic variability of β̂0 and β̂1 is
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reflected in 2©, which is essentially V̂ar(ŷ∗) = V̂ar(β̂0 + β̂1x∗). This part of the variability
of the prediction also depends critically on the value of x∗, at which prediction is made.
The variance of the prediction error is minimized when x∗ equals the sample mean x̄ of the
explanatory variable and increases quadratically as x∗ moves away from x̄. In other words,
prediction will become less and less accurate in the region far from the center of the observed
data.

2. Variability of the random error ε∗: Even if we know the true values of β0 and β1, the future
response value y∗ still cannot be predicted perfectly because of the inherent random error ε∗
with variance σ2, which is 1© = V̂ar(ε∗). The extra s2 that appears in (1.5.3) is a measure
of the contribution of this source of uncertainty, which has nothing to do with the parameter
estimation process.

Example 1.5.3. (SOA Course 120 November 1990 Question 4: Decomposing the
variance of the prediction error into two parts) You have performed a simple regression
of the form y = β0 + β1x+ ε.

You are given:

n = 25

x∗ = 3x̄∑
(xi − x̄)2 = 25x̄2

Determine the fraction of the variance in y∗ = β̂0 + β̂1x∗ that is due to the variability of the
least squares line about the regression line.

(A)
1

6

(B)
4

25

(C)
21

46

(D)
5

6

(E) The correct answer cannot be determined from the data given.

Solution. The estimated variance due to the variability of the least squares line is

s2

[
1

n
+

(x∗ − x̄)2

Sxx

]
= s2

[
1

25
+

(3x̄− x̄)2

25x̄2

]
=
s2

5
,

while the estimated variance due to the variability of y∗ is s2. By division, the required fraction

is (1/5)/(1 + 1/5) = 1/6 . (Answer: (A))
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