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PREFACE

It is impossible to escape the practical implications of compound interest
in our modern society. The consumer is faced with a bewildering choice
of bank accounts offering various rates of interest, and wishes to choose
the one which will give the best return on her savings. A home-buyer is
offered various mortgage plans by different companies, and wishes to
choose the one most advantageous to him. An investor seeks to purchase
a bond which pays coupons on a regular basis and is redeemable at some
future date; again, there are a wide variety of choices available.

Comparing possibilities becomes even more difficult when the
payments involved are dependent on the individual’s survival. For
example, an employee is offered a variety of different pension plans and
must decide which one to choose. Also, most people purchase life
insurance at some point in their lives, and a bewildering number of
different plans are offered.

The informed consumer must be able to make an intelligent choice
in situations like those described above. In addition, it is important that,
whenever possible, she be able to make the appropriate calculations
herself in such cases. For example, she should understand why a given
series of mortgage payments will, in fact, pay off a certain loan over a
certain period of time. She should also be able to decide which portion
of a given payment is paying off the balance of the loan, and which
portion is simply paying interest on the outstanding loan balance.

The first goal of this text is to give the reader enough information
so that he can make an intelligent choice between options in a financial
situation, and can verify that bank balances, loan payments, bond
coupons, etc. are correct. Too few people in today's society understand
how these calculations are carried out.

In addition, however, we are concerned that the student, besides
being able to carry out these calculations, understands why they work. It
is not enough to memorize a formula and learn how to apply it; you
should understand why the formula is correct. We also wish to present
the material in a proper mathematical setting, so the student will see how
the theory of interest is interrelated with other branches of mathematics.
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Let me explain why the phrase “Problem-Solving Approach”
appears in the title of this text. We will prove a very small number of
formulae and then concentrate our attention on showing how these
formulae can be applied to a wide variety of problems. Skill will be
needed to take the data presented in a particular problem and see how to
rearrange it so the formulae can be used. This approach differs from
many texts, where a large number of formulae are presented, and the
student tries to memorize which problems can be solved by direct
application of a particular formula. We wish to emphasize
understanding, not rote memorization.

A working knowledge of elementary calculus is essential for a
thorough understanding of all the material. However, a large portion of
this book can be read by those without such a background by omitting
the sections dependent on calculus. Other required background material
such as geometric sequences, probability and expectation, is reviewed
when it is required.

Each chapter in this text includes a large number of examples and
exercises. It should be obvious that the most efficient way for a student
to learn the material is for her to work all the exercises.

Finally, let us stress that it is assumed that every student has a
calculator (with a y* button) and knows how to use it. It is because of
our ability to use a calculator that many formulae mentioned in older
texts on the subject are now unnecessary.

This book is naturally divided into two parts. Chapters 1-5 are
concerned solely with the Theory of Interest, and Life Contingencies is
introduced in Chapters 6-11.

In Chapter 1 we present the basic theory concerning the study of
interest. Our goal here is to give a mathematical background for this
area, and to develop the basic formulae which will be needed in the rest
of the book. Students with a weak calculus background may wish to
omit Section 1.6 on the force of interest, as it is of more theoretical than
practical importance. In Chapter 2 we show how the theory in Chapter 1
can be applied to practical problems. The important concept of equation
of value is introduced, and many worked examples of numerical
problems are presented. Chapter 3 discusses the extremely important
concept of annuities. After developing a few basic formulae, our main
emphasis in this chapter is on practical problems, seeing how data for
such problems can be substituted in the basic formulae. It is in this
section especially that we have left out many of the formulae presented
in other texts, preferring to concentrate on problem-solving technigques
rather than rote memorization. Chapters 4 and 5 deal with further
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applications of the material in Chapters 1 through 3, namely
amortization, sinking funds and bonds.

Chapter 6 begins with a review of the important concepts of
probability and expectation, and then illustrates how probability can be
combined with the theory of interest. In Chapter 7 we introduce life
tables, discussing how they are constructed and how they can be applied.
Chapter 8 is concerned with life annuities, that is annuities whose
payment are conditional on survival, and Chapter 9 discusses life
insurance. These ideas are generalized to multi-life situations in Chapter
10.

Finally, Chapter 11 demonstrates how many of these concepts are
applied in the extremely important area of pension plans.

Chapters 1 through 6 have been used for several years as the text
material for a one semester undergraduate course in the Theory of
Interest, and | would like to thank those students who pointed out errors
in earlier drafts. In addition, I am deeply indebted to Brenda Crewe and
Wanda Heath for an excellent job of typing the manuscript, and to my
colleague, Dr. P.P. Narayanaswami, for his invaluable technical
assistance.

Chuck Vinsonhaler, University of Connecticut, was strongly
supportive of this project, and introduced me to the people at ACTEX
Publications, for which I owe him a great deal. Dick London did the
technical content editing, Marilyn Baleshiski provided the electronic
typesetting, and Marlene Lundbeck designed the text's cover. | would
like to thank them for taking such care in turning a very rough
manuscript into what I hope is a reasonably comprehensive yet friendly
and readable text book for actuarial students.

St. John’s, Newfoundland Michael M. Parmenter
December, 1988



PREFACE TO THE
REVISED EDITION

In the fifteen months since the original edition of this text was published,
a number of comments have been received from teachers and students
regarding that edition.

We are pleased to note that most of the comments have been quite
complimentary to the text, and we are making no substantial modifica-
tions at this time.

A significant, and thoroughly justified, criticism of the original
edition is that time diagrams were not used to illustrate the examples
given in the second half of the text, and that deficiency has been rectified
by the inclusion of thirty-five additional figures in the Revised Edition.

Thus it is fair to say that there are no new topics contained in the
Revised Edition, but rather that the pedagogy has been strengthened. For
this reason we prefer to call the new printing a Revised Edition, rather
than a Second Edition.

In addition we have corrected the errata in the original edition. We
would like to thank all those who took the time to bring the various
errata to our attention.

February, 1990 M.M.P.



PREFACE TO THE
THIRD EDITION

It is now more than ten years since the original publication of this
textbook. In that time, several very significant developments have
occurred to suggest that a new edition of the text is now needed, and
those developments are reflected in the modifications and additions made
in this Third Edition.

First, improvements in calculator technology give us better
approaches to reach numerical results. In particular, many calculators
now include iteration algorithms to permit direct calculation of unknown
annuity interest rates and bond yield rates. Accordingly, the older
approximate methods using interpolation have been deleted from the
text.

Second, with the discontinued publication of the classic textbook
Life Contingencies by C.W. Jordan, our text has become the only one
published in North America which provides the traditional presentation
of contingency theory. To serve the needs of those who still prefer this
traditional approach, including the use of commutation functions and a
deterministic life table model, we have chosen to include various topics
contained in Jordan’s text but not contained in our earlier editions.
These include insurances payable at the moment of death (Section 9.3),
life contingent accumulation functions (Section 8.2), the table of uniform
seniority concept for use with Makeham and Gompertz annuity values
(Section 11.1), simple contingent insurance functions (Section 11.1), and
an expansion of the material regarding multiple-decrement theory
(Section 7.6).

Third, actuaries today are interested in various concepts of finance
beyond those included in traditional interest theory. To that end we have
introduced the ideas of real rates of return, investment duration, modified
duration, and so on, in this Third Edition.
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Fourth, the new edition provides a gentle introduction to the more
modern stochastic view of contingency theory, in the completely new
Chapter 10, to supplement the traditional presentation.

In connection with the expansion of topics, the new edition
contains over forty additional exercises and examples. As well, the
numerical answers to the exercises have been made more precise and the
errata in the previous edition have been corrected. We would like to
thank everyone who brought such errata to our attention.

With the considerable modifications made in the new edition, we
believe this text is now appropriate for two major audiences: pension
actuaries, who wish to understand the use of commutation functions and
deterministic contingency theory in pension mathematics, and university
students, who seek to understand basic contingency theory at an intro-
ductory level before undertaking a study of the more mathematically
sophisticated stochastic contingency theory.

As with the original edition of this text, the staff at ACTEX
Publications has been invaluable in the development of this new edition.
Specifically I would like to thank Denise Rosengrant for her text
composition and typesetting work, and Dick London, FSA, for his
technical content editing.

February, 1999 M.M.P



CHAPTER ONE
INTEREST: THE BASIC THEORY

1.1 ACCUMULATION FUNCTION

The simplest of all financial transactions is one in which an amount of
money is invested for a period of time. The amount of money initially
invested is called the principal and the amount it has grown to after the
time period is called the accumulated value at that time.

This is a situation which can easily be described by functional
notation. If t is the length of time for which the principal has been
invested, then the amount of money at that time will be denoted by A(t).
This is called the amount function. For the moment we will only
consider values t > 0, and we will assume that t is measured in years.
We remark that the initial value A(0) is just the principal itself.

In order to compare various possible amount functions, it is
convenient mathematically to define the accumulation function from the

amount function as a(t) = %%)5 We note that a(0) = 1 and that A(t) is

just a constant multiple of a(t) , namely A(t) = k - a(t) where k = A(0) is
the principal.

What functions are possible accumulation functions? In theory,
any function a(t) with a(0) = 1 could represent the way in which money
accumulates with the passage of time. Certainly, however, we would
hope that a(t) is increasing. Should a(t) be continuous? That depends on
the situation; if a(t) represents the amount owing on a loan t years after
it has been taken out, then a(t) may be continuous if interest continues to
accumulate for non-integer values of t. However, if a(t) represents the
amount of money in your bank account t years after the initial deposit
(assuming no deposits or withdrawals in the meantime), then a(t) will
stay constant for periods of time, but will take a jump whenever interest
is paid into the account. The graph of such an a(t) will be a step
function. We will normally assume in this text that a(t) is continuous; it
is easy to make allowances for other situations when they turn up.
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In Figure 1.1 we have drawn graphs of three different types of
accumulation functions which occur in practice:
a(t
alt) alt) a
(0,1) (0,1) (0,1) —

(a) (b) (c)
FIGURE 1.1

Graph (a) represents the case where the amount of interest earned is
constant over each year. On the other hand, in cases like (b), the amount
of interest earned is increasing as the years go on. This makes more
sense in most situations, since we would hope that as the principal gets
larger, the interest earned also increases; in other words, we would like
to be in a situation where “interest earns interest”. There are many
different accumulation functions which look roughly like the graph in
(b), but the exponential curve is the one which will be of greatest interest
to us.

We remarked earlier that a situation like (c) can arise whenever
interest is paid out at fixed periods of time, but no interest is paid if
money is withdrawn between these time periods. If the amount of
interest paid is constant per time period, then the “steps” will all be of the
same height. However, if the amount of interest increases as the
accumulated value increases, then we would expect the steps to get larger
and larger as time goes on.

We have used the term interest several times now, so perhaps it is
time to define it!

Interest = Accumulated Value — Principal

This definition is not very helpful in practical situations, since we
are generally interested in comparing different financial situations to
determine which is most profitable. What we require is a standardized
measure for interest, and we do this by defining the effective rate of
interest i (per year) to be the interest earned on a principal of amount 1
over a period of one year. That is,

i=a(l) - 1. (1.1)
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We can easily calculate i using the amount function A(t) instead of
a(t), if we recall that A(t) = k - a(t). Thus

i:ﬁg-r:“z@ﬂmzA“KJ@X (1.2)

Verbally, the effective rate of interest per year is the amount of
interest earned in one year divided by the principal at the beginning of
the year. There is nothing sacred about the term “year” in this definition.
We can calculate an effective rate of interest over any time period by
simply taking the numerator of the above fraction as being the interest
earned over that period.

More generally, we define the effective rate of interest in the n'"
year by

. A(n) —A(-1) _ a(n) —a(n-1)
h=""An-0  —  a0-D) (1.3)
Note that iy, calculated by (1.3), is the same as i defined by either (1.1) or
(1.2).

Consider the function a(t) = t> + t + 1.

(@) Verify that a(0) = 1.

(b)  Show that a(t) is increasing for all t > 0.

(c) Is a(t) continuous?

(d) Find the effective rate of interest i for a(t).

(e) Findip.

(@ a)=(02+(0)+1=1

(b) Notethata/(t) =2t+1 > 0forallt > 0, so a(t) is increasing.

(c) The easiest way to solve this is to observe that the graph of a(t) is a
parabola, and hence a(t) is continuous (or recall from calculus that
all polynomial functions are continuous).

d i=a(l)—1=3-1=2
© i a(n) —a(n—1) _ n’+ n+1—[(n—1)*+ (n—1) +1]

" a(n—1) (n—1)>+ (n-1)+1

_ 2n O

T nP—n+1



4 Chapter 1

1.2 SIMPLE INTEREST

There are two special cases of the accumulation function a(t) that we will
examine closely. The first of these, simple interest, is used occasionally,
primarily between integer interest periods, but will be discussed mainly
for historical purposes and because it is easy to describe. The second of
these, compound interest, is by far the most important accumulation
function and will be discussed in the next section. Keep in mind that in
both of these cases a(t) is continuous, and also that there are some
practical settings where modifications must be made.

Simple interest is the case where the graph of a(t) is a straight line.
Since a(0) =1, the equation must therefore be of the general form
a(t) =1+ bt for some b. However, the effective rate of interest i is
given by i = a(1) — 1 = b, so the formula is

a(ty=1+it, t>0. (1.4)

a(t) =1+it

0,1) @1+

FIGURE 1.2
Remarks

1. Thisis case (a) graphed in Figure 1.1. In this situation, the amount
of interest earned each year is constant. In other words, only the
original principal earns interest from year to year, and interest
accumulated in any given year does not earn interest in future
years.

2. The formula a(t) = 1 + it applies to the case where the principal is
A(0) = a(0) = 1. More generally, if the principal at time 0 is equal
to k, the amount at time t will be A(t) = k(1 + it).
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3. We noted above that the “i” in a(t) = 1 + it is also the effective
rate of interest for this function. Note however that

. 1+in—[1+i(n-1)]
= T+i(n—1)

- mz'mj (1.5)

Observe that i, is not constant. In fact, i, decreases as n gets
larger, a fact which should not surprise us. If the amount of
interest stays constant as the accumulated value increases, then
clearly the effective rate of interest is going down.

4.  Clearly a(t) = 1 + it is a formula which works equally well for all
values of t, integral or otherwise. However, problems can develop
in practice, as illustrated by the following example.

Example 1.2

Assume Jack borrows 1000 from the bank on January 1, 1996 at a rate of
15% simple interest per year. How much does he owe on January 17,
19967

The general formula for the amount owing at time t in general is
A(t) = 1000(1 + .15t), but the problem is to decide what value of t
should be substituted into this formula. An obvious approach is to take
the number of days which have passed since the loan was taken out and
divide by the number of days in the year, but should we count the
number of days as 16 or 17? Getting really picky, should we worry
about the time of day when the loan was taken out, or the time of day
when we wish to find the value of the loan? Obviously, any value of t is
only a convenient approximation; the important thing is to have a
consistent rule to be used in practice. Two techniques are common:

(@) The first method is called exact simple interest, and with it we use

t— number of days_ (1.6)

When counting the number of days it is usual to count the last day,

but not the first. In our case this would lead to t = % so Jack

owes 1000 [1 n (.15)(316%)} — 1006.58.
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(b) The second method is called ordinary simple interest (or
the Banker’s Rule), and with it we use

t= W_ng%gm_ (1.7)

The same procedure as above is used for calculating the number of
days. In our case, we would have t = % so the debt is

1000 [1 + (.15)( 3%6%)] — 1006.67.

The common practice in Canada is to use exact simple interest, whereas
ordinary simple interest is used in the United States and in international
markets. O

1.3 COMPOUND INTEREST

The most important special case of the accumulation function a(t) is the
case of compound interest. Intuitively speaking, this is the situation
where money earns interest at a fixed effective rate; in this setting, the
interest earned in one year earns interest itself in future years.

If i is the effective rate of interest, we know that a(1) = 1+1i,s0 1
becomes 1 + i after the first year. What happens in the second year?
Consider the 1 4 i as consisting of two parts, the initial principal 1 and
the interest i earned in the first year. The principal 1 will earn interest in
the second year and will accumulate to 1 +i. The interest i will also
earn interest in the second year and will grow to i(1 + i). Hence the total
amount after two years is 1 + i+ i(14+1i) = (1 +i)2. By continuing this
reasoning, we see that the formula for a(t) is

att)=(1+1i), t>0. (1.8)
a(t) = (1+i)"
(0,1) L1+1)

FIGURE 1.3
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Remarks

1.  This is an example of the type of function shown in part (b) of the
graph in Figure 1.1.

2. The formula a(t) = (1 + i)' applies to the case where the principal
is A(0) = a(0) = 1. More generally, if the principal at time O is
equal to k, the amount at time t will be A(t) = k(1 + i)*.

3. Observe that the “i” in (1 +i)! is the effective rate of interest.
More generally,

; 1+i)" — @+i)? . .

ih= - =1+i1i—-1=1 1.9

n (1 n I)n—l + ( )
Hence, in this case i, is the same for all positive integers n. We
shouldn’t be surprised, since this fits with our idea that, in com-
pound interest, the effective rate of interest is constant.

4.  Mathematically, any value of t, whether integral or not, can be

substituted into a(t) = (1 +i).. This is an easier task for us today
than it was fifty years ago; we just have to press the appropriate
buttons on our calculators! Again, there are problems determining
what value of t should be used, but we can deal with them as we
did in the last section.

In practical situations, however, a very different solution is
sometimes used in the case of compound interest. To find the
amount of a loan (for example) when t is a fraction, first find the
amounts for the integral values of t immediately before and
immediately after the fractional value in question. Then use linear
interpolation between the two computed amounts to calculate the
required answer.

This is equivalent to saying that compound interest is used
for integral values of t, and simple interest is used between integral
values. In Figure 1.4, the solid line represents a(t) = (1 + i)',
whereas the dotted lines indicate the graph of a(t) if linear
interpolation is used.

a(t)

/' @A,1+i)

| t

FIGURE 14

(0,2)
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As we will see later, this common procedure benefits the lender in
a financial transaction, and (consequently) is detrimental to the borrower
if she has to repay the loan at a duration between integral values.

Example 1.3

Jack borrows 1000 at 15% compound interest.

(@ How much does he owe after 2 years?

(b)  How much does he owe after 57 days, assuming compound interest
between integral durations?

(c) How much does he owe after 1 year and 57 days, under the same
assumption as in part (b)?

(d) How much does he owe after 1 year and 57 days, assuming linear
interpolation between integral durations?

(e) In how many years will his principal have accumulated to 2000?

(@) 1000(1.15)% = 1322.50.

(b) The most suitable value for t is 3567— and the accumulated value is

1000(1.15)% = 1022.07.

(c) 1000(1.15)%% = 1175.38

(d) We must interpolate between A(1) = (1000)(1.15) = 1150.00 and
A(2) = 1000(1.15)? = 1322.50. The difference between these
values is A(2) — A(1) = 172.50. The portion of this difference
which will accumulate in 57 days, assuming simple interest, is

(%) (172.50) = 26.94. Thus the accumulated value after 1 year

and 57 days is 1150.00 + 26.94 = 1176.94. Observe that the
borrower owes more money in this case than he does in part (c).

(&) We seek t such that 1000(1.15)! = 2000, or that (1.15)' = 2.
Using logs we obtain

_ log2
t= og 115 = 4.9595 years. O

To close this section, we will compare simple interest and compound
interest to see which gives the better return. In Figure 1.5, graphs for
both simple interest and compound interest are drawn on the same set of
axes.
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FIGURE 1.5

We know that the exponential function (1 + i)' is always concave
up (because the second derivative is (1 + i)'[In (1 4 i)]?, which is greater
than zero), whereas 1 + it is a straight line. These facts tell us that the
only points of intersection of these graphs are the obvious ones, hamely
(0,2) and (1, 1 +i). They also give us the two important relationships

Q+it<1l+it, for 0<t<1 (1.10)
and
Q+i)Y>1+it, for t>1. (1.11)

Hence we conclude that compound interest yields a higher return than
simple interest if t > 1, whereas simple interest yields more if 0 < t < 1.
The first of these statements does not surprise us, since for t > 1, we
have interest as well as principal earning interest in the (1 + i) case. The
second statement reminds us that, for periods of less than a year, simple
interest is more beneficial to the lender than compound interest, a fact
which was illustrated in Example 1.3.

1.4 PRESENT VALUE AND DISCOUNT

In Section 1.1 we defined accumulated value at time t as the amount that
the principal accumulates to over t years. We now define the present
value t years in the past as the amount of money that will accumulate to
the principal over t years. In other words, this is the reverse procedure of
that which we have been discussing up to now.

| | |
Present Priné:ipal Accurrlwlated
Value Value
FIGURE 1.6
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For example, 1 accumulates to 1 + i over a single year. How much
money is needed, at the present time, to accumulate to 1 over one year?
We will denote this amount by v, and, recalling that v accumulates to
v(1 + i), we have v(1 + i) = 1. Therefore

_ 1
V —_— j-TI'. (1.12)

These two accumulations are shown in Figure 1.7.
1
1 ?L i
I
-1

o1
|
Rt

FIGURE 1.7

From now on, unless explicitly stated otherwise, we will assume
that we are in a compound interest situation, where a(t) = (1 +i)'. In

this case, the present value of 1, t years in the past, will be v = ﬁf

We summarize this on the time diagram shown in Figure 1.8.

1 1
N . Nt
(1‘t‘|) l—li- I :!_ 1—|}-I (1‘t‘|) AMOUNT
_t 1 0 1 t TIME
FIGURE 1.8

Observe that, since vt = (1+i)7!, the function a(t) = (1 + i)
expresses all these values, for both positive and negative values of t.
Hence (1 + i)! gives the value of one unit (at time 0) at any time t, past or
future. The graph is shown in Figure 1.9.

a(t)
A+i)

(0,1)

l t

FIGURE 1.9
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The Kelly family buys a new house for 93,500 on May 1, 1996. How
much was this house worth on May 1, 1992 if real estate prices have
risen at a compound rate of 8% per year during that period?

We seek the present value, at time t = —4, of 93,500 at time 0. This is

9:),,5oo(r%g)4 — 68,725.29. O

What happens to the calculation of present values if simple interest
is assumed instead of compound interest? The accumulation function is
now a(t) = 1 + it. Hence, the present value of one unit t years in the past
is given by x, where x(1 + it) = 1. Thus the present value is

_ 1
X= 13t (1.13)

The time diagram for this case is shown in Figure 1.10.

1 1
1jIL|t 1+1
|

|
Tt 1

1T' 1+t AMOUNT
1 t TIME

ot

FIGURE 1.10

In Exercise 15, you are asked to sketch the graph of this situation.
Unlike the compound interest case, this graph changes dramatically as it
passes through the point (0, 1).

We now turn our attention to the concept of discount. For the
moment we will not assume compound interest, since any accumulation
function will be satisfactory.

Imagine that 100 is invested, and that one year later it has
accumulated to 112. We have been viewing the 100 as the “starting
figure,” and have imagined that interest of 12 is added to it at the end of
the year. However, we could also view 112 as the basic figure, and
imagine that 12 is deducted from that value at the start of the year. From
the latter point of view, the 12 is considered an amount of discount.

Students sometimes get confused about the difference between
interest and discount, but the important thing to remember is that the
only difference is in the point of view, not in the underlying financial
transaction. In both situations we have 100 accumulating to 112, and
nothing can change that.
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Since discount focuses on the total at the end of the year, it is
natural to define the effective rate of discount, d, as

d= i;)m_—l. (1.14)

In other words, standardization is achieved by dividing by a(l) instead
of a(0), as was done in (1.2) to define the effective rate of interest i.

More generally, the effective rate of discount in the n" year is
given by

dn = %%@ (1.15)

(Compare this with the definition of iy, given by (1.3).)
Now we will derive some basic identities relating d to i. One
identity follows immediately from the definition of d, namely,

j_al)-1_ @+i)-1_

i
a(l) 1+ 1+1 (1.16)
Since 1 +i > 1, thistellsusthatd < i.
Immediately from the above we obtain
_ i1 _
1—d_1—1—+l_1—+|_v. (1.17)

Actually, this identity is exactly what we would expect from the
definition of d. The fact that 1 — d accumulates to 1 over one year is the
exact analogy of 1 accumulating to 1 + i over the same period.

Solving either of the above identities for i, we obtain

i= 9. (1.18)

The reader will be asked to derive other identities in the exercises
and to give verbal arguments in support of them. We note that all
identities derived so far hold for any accumulation function. For the rest
of this section, it will be assumed that a(t) = (1 + i)".
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In Section 1.3 we learned that to find the accumulated value t years
in the future we multiply by (1 + i)t, whereas to find the present value t

years in the past we multiply by ﬁf However, identity (1.17) tells

usthat 1 —d = 1%[ Hence, if d is involved, the rules for present and
accumulated value are reversed: present value is obtained by multiplying
by (1 — d)!, and accumulated value by multiplying by rld)f

Example 1.5

1000 is to be accumulated by January 1, 1995, at a compound rate of
discount of 9% per year.

(@) Find the present value on January 1, 1992.

(b) Find the value of i corresponding to d.

Solution
(a) 1000(1 —.09)® = 753.57.
i_d .09 _
(b) i =1—g = o1 = 0989. O
Example 1.6

Jane deposits 1000 in a bank account on August 1, 1996. If the rate of
compound interest is 7% per year, find the value of this deposit on

-
©
©
&

>
[
%)
[
wn
28
H

Solution

Some students think that the answer to this question should be 0, because
the money hasn’t been deposited yet! However, in a mathematical sense,
we know that money has value at all times, past or future, so the correct

. 1 \?
answer is 1ooo(m) — 873.44. O

1.5 NOMINAL RATE OF INTEREST

We will assume a(t) = (1 + i) throughout this section and, unless stated
otherwise, in all remaining sections of the book.

Example 1.7

A man borrows 1000 at an effective rate of interest of 2% per month.
How much does he owe after 3 years?
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What we want is the amount of the debt after three years. Since the
effective interest rate is given per month, three years is 36 interest
periods. Thus the answer is 1000(1.02)%® = 2039.89. O

The point of the above example is to illustrate that effective rates
of interest need not be given per year, but can be defined with respect to
any period of time. To apply the formulae developed to this point, we
must be sure that t is the number of effective interest periods in any
particular problem.

In many real-life situations, the effective interest period is not a
year, but rather some shorter period. Perhaps the lender tries to keep this
fact hidden, as it might be to his benefit to do so! For example, suppose
you want to take out a mortgage on a house and you discover a rate of
12% per year. When you dig a little, however, what you find out is that
this rate is “convertible semiannually”, which means that it is really 6%
effective per half-year. Is that the same thing? Not at all. Consider what
happens to an investment of 1. After half a year it has accumulated to
1.06. After one year (two interest periods) it has become
(1.06)> = 1.1236. So, over a one-year period, the amount of interest
gained is .1236, which means the effective rate of interest per year is
actually 12.36%. Although it may not be clear from the advertising,
many mortgage loans are convertible semiannually, so the effective rate
of interest is higher than the rate quoted.

As another example, consider a well-known credit card which

charges 18% per year convertible monthly. This means that the actual

rate of interest is Tlg = .015 effective per month. Over the course of a

year, 1 will accumulate to (1.015)* = 1.1956, so the effective rate of
interest per year is actually 19.56%.

The 18% in the last example is called a nominal rate of interest,
which means that it is convertible over a period other than one year. In
general, we use the notation iM to denote a nominal rate of interest
convertible m times per year, which implies an effective rate of interest

i(m) .. . . .
of 'ﬁ per m" of a year. If i is the effective rate of interest per year, it
follows that

1+i—[1+ﬂ]m (1.19)
= ol .
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Example 1.8

Find the accumulated value of 1000 after three years at a rate of interest
of 24% per year convertible monthly.

This is really 2% effective per month, so the answer is the same as
Example 1.7, namely 1000(1.02)% = 2039.89. O
Remark

An alternative method of solving Example 1.8 is to find i, the effective

rate of interest per year, and then proceed as in Section 1.3. We would
j(mym
i

have i = <1+W) — 1= (1+.02)! — 1 = .26824, and the answer
would be 1000 (1.26824)° = 2039.88.

Notice the difference of .01 in the two answers. This is because
not enough decimal places were kept in the value of i, and some error
crept in. Of course, if you use the memory in your calculator it is
unlikely that this type of error will occur. Nevertheless, the first solution
is still preferable; time spent on unnecessary calculations can be
significant in examination situations.

It will be extremely important in later sections of the text to be able
to convert from one nominal rate of interest to another whose convertible
frequency is different. Here is an example of this.

Example 1.9

If i® = .15, find the equivalent nominal rate of interest convertible
semiannually.

@) 2 6
We have (1 + '7) - (1 + %) 150 @ = 2[(1.025)% — 1] = .15378.
O

In the same way that we defined a nominal rate of interest, we
could also define a nominal rate of discount, d™, as meaning an

. . (m) N
effective rate of discount of dW per m™" of a year. Analogous to identity
(1.19), it is easy to see that

m7™
1_d:[ _dW] . (1.20)
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: 1
Sincel —d = T we conclude that

[H@]m:lﬂz(l_d)l: [1—@]%, (L.21)

for all positive integers m and n.

Example 1.10

Find the nominal rate of discount convertible semiannually which is
equivalent to a nominal rate of interest of 12% per year convertible

monthly.

2172 (12712 2
[ — %} = [1 + %] .50 1— % = (1.01)% = .942045, from
which we find d® = 2(1 — .942045) = .11591. O

1.6 FORCE OF INTEREST

We note before starting this section that it is somewhat theoretical, and is
independent of the rest of the text. Anyone wishing to proceed directly
to more practical problems can safely omit this material. In particular,
more background knowledge is required for a full understanding here
than is required for any other section; students with only a sketchy
knowledge of calculus might omit this on first reading.

Assume that the effective annual rate of interest is i = .12, and that
we want to find nominal rates i™ equivalent to i. The formula
i™ = m[(1+i)¥™ — 1], which comes from identity (1.19), is used to
calculate these values which are shown in Table 1.1.

TABLE 1.1

mJ[ 1 2 5 10 50
iM | 12| .1166 | .1146 | .1140 | .1135

We observe that i™ decreases as m gets larger, a fact which we
will be able to prove later in this section. We also observe that the values
of i™ are decreasing very slowly as we go further and further along; in
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the language of calculus, i™ seems to be approaching a limit. This is, in
fact, what is happening, and we can use L’Hopital’s rule to see what the
limit is. There is no need to assume i = .12 in our derivation, so we
proceed with arbitrary i.

~\1/m
lim i = lim m{(1+ )™ — 1] = lim A+ ==1 (19

m—oo m—oo
m

Since (1.22) is of the form 8 we take derivatives top and bottom, cancel,
and obtain

lim i™ = lim
m—oo m—oo

[(A+ )Y InQ+i)] =In(L+i), (1.23)
since lim (1 + pym =1,

This limit is called the force of interest and is denoted by 6, so we
have

§=In@+ i). (1.24)

In our example, 6 = In(1.12) = .11333. The reader should compare this
with the entries in Table 1.1.

Intuitively, 6 represents a nominal rate of interest which is
convertible continuously, a notion of more theoretical than practical
importance. However, 6 can be a very good approximation for i™ when
m is large (for example, a nominal rate convertible daily), and has the
advantage of being very easy to calculate.

We note that identity (1.24) can be rewritten as

e =1+i. (1.25)

The usefulness of this form is shown in the next example. Again we
stress the importance of being able to convert a rate of interest with a
given conversion frequency to an equivalent rate with a different
conversion frequency.
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A loan of 3000 is taken out on June 23, 1997. If the force of interest is

14%, find each of the following:

(@) The value of the loan on June 23, 2002.

(b) The value of i.

(c) The value of i*2,

(@) The value 5 years later is 3000(1 +i)°. Using e’ =1 +1i, we
obtain 3000(e**)® = 3000 &7 = 6041.26.

(b) i=el—1=.15027.

i)\ 12 ; 14
(©) (1 + TZ) =1+ 1i=e"" sowe have the result

i12) = 12(e1412 _ 1) = .14082. O
Remark

Note that if we tried to solve part (a) by first obtaining i = .15027 (as in
part (b)), and then calculating 3000(1.15027)°, we would get 6041.16, an
answer differing from our first answer by .10. There is nothing wrong
with this second method, except that not enough decimal places were
carried in the value of i to guarantee an accurate answer. Let us repeat an
earlier admonition: it is always wise to do as few calculations as
necessary.

Observe that D[(1 + )] = (1 + i) - In(1 + i), where D stands for
the derivative with respect to t. Hence we see that

§=In(L+1i) = D([1(1+ J’i){)t] _ Dz[a?t()t)]- (1.26)

Let us see why this fact happens to be true. Recall from the definition of

the derivative that D[a(t)] = lim Mg—iaa), o

a(t+h) — a(t)
Dla)] _j,at+h)—a) . a()
Ta@® A% ham 4 b ()
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The term in (1.27) is just the effective rate of interest

a(t+h) — a(t)
over a very small time period h, so—aﬁ)— is the nominal annual

rate corresponding to that effective rate, which agrees with our earlier
definition of 6.

The above analysis does more than that, however. It also indicates
how the force of interest should be defined for arbitrary accumulation
functions.

First, let us observe that 6 =In(1+1i) is independent of t.
However, this is a special property of compound interest, corresponding
to a constant i. For arbitrary accumulation functions, we define the
force of interest at time t, 6, by

a(t+ h) — a(t)
(R

5 = 2La] (1.28)

since we would normally expect 6é; to depend on t.
For certain functions, it is more convenient to use the equivalent
definition

& = D[In (a())]. (1.29)

We also remark that, since A(t) = k - a(t) , it follows that

5, = 2LOOL _ ppin (aq)). (1.30)
Example 1.12
Find 6 in the case of simple interest.
|
6t:D(1+'t)— i O

I+t — 141t

We now have a method for finding the force of interest, é;, given
any accumulation function a(t). What if we are given &; instead, and
wish to derive a(t) from it?

To start with, let us write our definition of ¢; from (1.29) using a
different variable, namely 6, = D[In(a(r))], where D now means the
derivative with respect to r. Integrating both sides of this equation from
0 to t, we obtain
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t t t
/O ordr = /0 D[In (a(r))] dr In(a(r)) .
= In(a(t)) — In(a(0))
= In(a(t)), (1.31)
since a(0) = 1and In1 = 0. Then taking the antilog we have
a(t) = elodedr (1.32)

Example 1.13

Prove that if § is a constant (i.e., independent of r), then a(t) = (1 + i)
for some i.

If 6, = c, the right hand side of (1.32) is e/ocdr — et — (%), Hence the
result is proved with i = e® — 1. O
Example 1.14

n
Prove that / A(t) 6: dt = A(n) — A(0) for any amount function A(t).
0

The left hand side is

" " DIAMIT . /"
/o A(t) & dt = /0 A(t)[ D ]dt_ /o D[A(D)] dt

:A(t)‘z = A(n) — A(0) as required.
a

The identity in the above example has an interesting verbal
interpretation. The term 6, dt represents the effective rate of interest at
time t for the infinitesimal “period of time” dt. Hence A(t)¢;dt
represents the amount of interest earned in this period, and fon A(t) 6; dt
represents the total amount of interest earned over the entire period, a
number which is clearly equal to A(n) — A(0).

We now return to the compound interest case where we have
a(t) = (L +1i)t. It is interesting to write some of the formulae already
developed as power series expansions. For example 6 =In(1+1)

becomes
) i2 i3 i4
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Convergence is a concern here, but as long as |i| < 1, which is usually
the case, the above series does converge.

Another important formula was i = e° — 1, which becomes
2 3
i:6+g!—+g—!+---. (1.34)

Since all terms on the right hand side are positive, this allows us to
conclude immediately that i > 6. We note in passing that this series
converges for all 6.

Next let us expand the expression i = 1—Edr =d(1 — d)~%, which
becomes

i=dl+d+d?+d¥+ - )=d+d?+d®+---. (L.39)

Again this shows us very clearly that i > d. We also note that we must
have |d| < 1 for this series to converge. In fact, trying to put d = 2

yields an amusing result: the left hand side is i = 1—22 = —2, whereas

the right hand side becomes 2 + 22 + 23 + ... all of which are positive
terms. Thus we have “proven” that —2 is a positive number!

Next let us expand i™ as a function of i. From (1.19) we have
iM =m[L+i)¥™— 1], s0

. i1, DX -1t -2).
|(m):m[1+%|+%!)|2+(m)(m 3!)(m )|3+..._1
i _ 1 qyi_
e [hg s GRS, o

Again, this converges for | i| < 1.

Why are we interested in power series expansions? Well, we have
already seen that they sometimes allow us to easily conclude facts like
i > 6 (although they certainly aren’t needed for that). They also give us
a quick means of calculating some of these functions, since often only
the first few terms of the series are necessary for a high degree of
accuracy. If you ask your calculator to do this work for you instead, it
will oblige, but the program used for the calculation will often be a
variation of one of those described above.
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As a final example, let us expand d™ in terms of 6. We have

[ - %} _@tiytoe, (137)

SO

d™ = m[1— e

_ 6 _ s
_ mll - (1+(—%)+( 2;“)2+( 35“)3+~~>

_ mlé_ & &8
”“[WW*W‘ }
2 3
_ 5— (?m+3§5m2_"" (1.38)

From this we easily see that lim d™ = 6. In other words, there is no
m—oo

need to define a force of discount, because it will turn out to be the same
as the force of interest already defined.

EXERCISES

1.1 Accumulation Function; 1.2 Simple Interest;
1.3 Compound Interest

1-1. Alphonse has 14,000 in an account on January 1, 1995.

(@ Assuming simple interest at 8% per vyear, find the
accumulated value on January 1, 2001.

(b) Assuming compound interest at 8% per year, find the
accumulated value on January 1, 2001.

(c) Assuming exact simple interest at 8% per year, find the
accumulated value on March 8, 1995.

(d) Assuming compound interest at 8% per year, but linear
interpolation between integral durations, find the accumula-
ted value on February 17, 1997.
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1-2.

1-3.

1-5.

1-6.

Mary has 14,000 in an account on January 1, 1995.

(@ Assuming compound interest at 11% per year, find the
accumulated value on January 1, 2000.

(b)  Assuming ordinary simple interest at 11% per year, find the
accumulated value on April 7, 2000.

(c) Assuming compound interest at 11% per year, but linear
interpolation between integral durations, find the accumula-
ted value on April 7, 2000.

For the a(t) function given in Example 1.1, prove that i1 < i, for
all positive integers n.

Consider the function a(t) = /1 + (i2+2i)t3, i > 0, t > 0.

(@ Showthata(0)=1landa(l) =1+1.

(b) Show that a(t) is increasing and continuous fort > 0.

(¢) Show that a(t) < 1+it for 0 <t <1, but a(t) > 1+ it for
t> 1.

(d) Showthata(t) < (1+ i)t if tis sufficiently large.

Let a(t) be a function such that a(0) = 1 and iy, is constant for all n.
(@) Prove that a(t) = (1 + i)! for all integers t > 0.
(b) Can you conclude that a(t) = (1 + i) for all t > 0?

Let A(t) be an amount function. For every positive integer n,
define I, = A(n) — A(n—1).

(@) Explain verbally what I, represents

(b) Provethat A(n) —AQ) =1y + 12+ -+ 1.

(c) Explain verbally the result in part (b).

(d) Isittruethata(n) —a(0) =iy + i+ --- +i,? Explain.

(@ In how many years will 1000 accumulate to 1400 at 12%
simple interest?

(b) At what rate of simple interest will 1000 accumulate to 1500
in 6 years?

(¢) Repeat parts (a) and (b) assuming compound interest instead
of simple interest.
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1-8.

1-9.

1-10.

1-11.

1-12.

1.4

1-13.

1-14.

Chapter 1

At a certain rate of simple interest, 1000 will accumulate to 1300
after a certain period of time. Find the accumulated value of 500 at

a rate of simple interest % as great over twice as long a period of
time.

Find the accumulated value of 6000 invested for ten years, if the
compound interest rate is 7% per year for the first four years and
11% per year for the last six.

Annual compound interest rates are 13% in 1994, 11% in 1995 and
15% in 1996. Find the effective rate of compound interest per year
which yields an equivalent return over the three-year period.

At a certain rate of compound interest, it is found that 1 grows to 2
in x years, 2 grows to 3 iny years, and 1 grows to 5 in z years.
Prove that 6 grows to 10 in z — x — y years.

If 1 grows to K in x periods at compound rate i per period and 1
grows to K in y periods at compound rate 2i per period, which one
of the following is always true? Prove your answer.

@ x<2y

(b) x=2y
() x>2
d) y=+Xx
(e) y>2x

Present Value and Discount

Henry has an investment of 1000 on January 1, 1998 at a

compound annual rate of discount d = .12,

(@)  Find the value of his investment on January 1, 1995.

(b)  Find the value of i corresponding to d.

(c)  Using your answer to part (b), rework part (a) using i instead
of d. Do you get the same answer?

Mary has 14,000 in an account on January 1, 1995.

(@ Assuming compound interest at 12% per year, find the
present value on January 1, 1989.

(b) Assuming compound discount at 12% per year, find the
present value on January 1, 1989.

(c) Explain the relative magnitude of your answers to parts (a)
and (b).
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1-15.

1-16.

1-17.

1-18.

1-19.

1.5

1-20.

(a) Sketch a graph of a(t) with its extension to present value in
the case of simple interest.

(b) Explain, both mathematically and verbally, why 1 — it is not
the correct present value t years in the past, when simple
interest is assumed.

Prove that d, is constant in the case of compound interest.
Prove each of the following identities mathematically. For parts

(a), (b) and (c), give a verbal explanation of how you can see that
they are correct.

(@ d=iv (d) %_%:1
O a0 o) <Y
( i-d=id M ivVi-d=dy/I+i

Four of the following five expressions have the same value (for
i > 0). Which one is the exception?

i 2
@ a E30|)2 0 = ©i-dd @F-id (@i

The interest on L for one year is 216. The equivalent discount on L
for one year is 200. What is L?

Nominal Rate of Interest

Acme Trust offers three different savings accounts to an investor.

Account A:  compound interest at 12% per year convertible
quarterly.

Account B:  compound interest at 11.97% per year convertible 5
times per year.

Account C:  compound discount at 11.8% per year convertible
10 times per year.

Which account is most advantageous to the investor? Which
account is most advantageous to Acme Trust?
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1-21.

1-22.

1-23.

1-24.

1-25.

1-26.

1-27.

1-28.

1.6

1-29.

Chapter 1

Phyllis takes out a loan of 3000 at a rate of 16% per year
convertible 4 times a year. How much does she owe after 21
months?

The Bank of Newfoundland offers a 12% mortgage convertible
semiannually. Find each of the following:

@i (b) d® (c)i®2

(d) The equivalent effective rate of interest per month.

100 grows to 107 in 6 months. Find each of the following:
(a) The effective rate of interest per half-year.
(b) i@ ON (d) d®

. m 149
Find nsuch that 1 + > — =" 6"
m= 1

8

Express d() as a function of i®,

i® i(30) )

i _ i _d _
Showthatv<1+ 3 > = <1+ 30 > <1 —5—> 1—d.
Prove that i¥d® > i®d®,

i(m) g (m)
: _i'd
(@) Provethati™ —d™ = L5—.

(b) Prove that

3

11
gm jm =
Force of Interest

Find the equivalent value of ¢ in each of the following cases.

@ i=.13
(b d=.13
() i¥=.13

@ d® =13
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1-30.

1-31.

1-32.

1-33.

1-34.

1-35.

1-36.

1-37.

1-38.

1-39.

1-40.

1-41.

1-42.

In Section 1.3, it was shown that for 0 <t <1, (1 +i)' < 1+it.
Show that 1 + it — (1-+i)! is maximized at t = %[Ini —1Iné].

Assume that the force of interest is doubled.

(@) Show that the effective annual interest rate is more than
doubled.

(b) Show that the effective annual discount rate is less than
doubled.

Show that lim L=¢ = 50,
i—0 0

Find a(t) if 6 = .04(1 + ).
Obtain an expression for & if A(t) = kat* bt cd",

Using mathematical induction, prove that for all positive integers
n

n, g—vn(vnflé) = —(1+1i)(n—1)!, where éj\—/ denotes derivative

with respect to v.

Express v as a power series expansion in terms of 6.
Express d as a power series expansion in terms of i.
Prove that i™ < i™ if n > m.

Prove thatd < d® < § < i™ < iforalln > 1.

2
Show that D(6;) = D—Ag@ — (§)2 where D is the derivative with
reSpeCt tot.

_od4i, d2—i? | A3+
Showthaté = 55~ + = + =% — + -

Which is larger, i — 6 or 6 — d? Prove your answer.
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1-43. (a) Write a computer program which will take a given value of i
and output values of i(™ for a succession of values of m.

(b) Extend the program in part (a) to also give you a value for 6,
using 6 = lim i™,

m—oo

1-44. Write a computer program which will take a given value of 6 and
output the equivalent value of i. (Use the power series expansion.)





