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Preface 

Monte Carlo methods are useful in solving a wide range of problems, 
both stochastic and deterministic, which cannot easily be solved using 
analytic methods. The genesis of contemporary Monte Carlo methods is 
the Manhattan Project – the project that developed the atomic bomb in 
the United States. Most of the early researchers in this field were the 
physicists and mathematicians working for the Manhattan project. 

The present work arose from the confluence of two streams of 
work. 

The first had its genesis in graduate work at the University of 
Maryland, culminating in the first author’s dissertation entitled “Classes 
of Infinite Binary Sequences and Their Set Relationships.” This later led 
to (1) the short monograph “An Introduction to Stochastic Simulation,” 
written for the Society of Actuaries, (2) research on imputation of miss-
ing values in sample surveys, completed under the auspices of the Na-
tional Academy of Sciences, and (3) an award-winning paper on “Home 
Equity Conversion Mortgages.” Dr. Herzog continues to be involved 
with applications of Monte Carlo methods to FHA-insured mortgages. 

The second author, while at Morgan Stanley, made extensive use 
of Monte Carlo methods to perform the pricing of financial securities and 
derivatives and the valuation of insurance products, and to conduct asset-
liability studies. He subsequently led a team, under contract to the U.S. 
Department of Energy, to analyze, by Monte Carlo techniques, the opti-
mal draw-down of the Strategic Petroleum Reserve. He also used Monte 
Carlo techniques as part of the Andrew Mellon Foundation's study of 
graduate education in the United States. At Princeton University, Dr. 
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Lord teaches both undergraduate and graduate courses on Monte Carlo 
methods and their application to the valuation of financial instruments. 
Class notes from these courses form the backbone of the present work.  

The authors assume that the reader has had at least a one-year 
undergraduate course in probability and statistics. Knowledge of some 
concepts of number theory would also be helpful in understanding a 
small amount of the material in Chapter 2. On the other hand, the reader 
with no background in number theory should not be at a major disad-
vantage. Although numerous references to the technical literature are 
provided, few are necessary for an understanding of the material dis-
cussed here. Rather, they are provided for those who would like to con-
sult original sources, enhance their understanding of the topics discussed 
here, and/or obtain some insight into (1) related areas of interest (such as 
statistical tests of randomness) or (2) more advanced topics omitted from 
this introductory work.  Quite a number of exercises are provided to help 
the reader reinforce his or her understanding of the material. Many of 
these have been taken from past examinations of the Society of Actuaries 
or the Casualty Actuarial Society, and some require a knowledge of basic 
life contingencies concepts and notation. Complete solutions to all of the 
text exercises are available in a companion solutions manual. 

The book consists of thirteen chapters. The first chapter is an in-
troduction to the rest of the book. Chapters 2 through 9 discuss the basic 
methodological approach. Chapter 2 presents a number of different 
schemes for generating uniform pseudo-random numbers. Chapters 3 and 
4 describe schemes for generating pseudo-random numbers from other 
probability distributions. Chapter 5 describes a number of variance re-
duction schemes, and Chapter 6 discusses quasi-random numbers and 
concludes with an example of the simulation of a (Bayesian) predictive 
distribution. Chapters 7, 8 and 9 deal, respectively, with sample size de-
termination, bootstrapping, and model validation techniques. The empha-
sis here is on the practical aspects of the techniques discussed. For the 
most part, lengthy mathematical proofs are omitted; however, if a short, 
elementary proof exists, then we have tended to include such proof in the 
text. We have also attempted to give the reader a feel for the historical 
development of this field of study.  

Chapters 10 through 13 each describes a separate application of 
the Monte Carlo method to a practical problem in insurance and/or fi-
nance. In Chapter 10, we demonstrate the generation of future interest 
rate scenarios via a two-factor mean-reverting model of short-term inter-
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est rates. In Chapter 11, we describe a Monte Carlo model used to simu-
late the experience of a Home Equity Conversion Mortgage (HECM) 
insurance operation. We consider a number of Monte Carlo applications 
to Value at Risk issues in Chapter 12. Finally, in Chapter 13, we use 
simulation techniques to investigate the efficiency of the stock market in 
the United States.  

In addition to the case studies, many of the applied exercises are 
presented within an insurance or financial setting. 

The first author would like to thank his thesis advisor at the Uni-
versity of Maryland, Professor James C. Owings, Jr., for enhancing his 
understanding of the topic of “randomness.” The second author would 
like to extend his appreciation to Dr. James A. Tilley for providing the 
stimulating environment at Morgan Stanley within which he honed his 
understanding of Monte Carlo methods. Many thanks as well to Noreen 
Goldman for her encouragement and support, and to our children, Ian 
and Michelle, for their understanding. 

In addition to Professor Owings, the authors are indebted to the 
other members of an academic and practitioner review team for their 
suggestions that improved the exposition and notation of this work. This 
group included James G. Bridgeman, FSA, University of Connecticut, 
Charles Holland, Ph.D., and Walter B. Lowrie, FSA, University of 
Connecticut (retired). 

Finally, the authors would like to extend thanks to Steven and 
Tracy Herzog for typing portions of an early draft of this work, and to 
the staff at ACTEX Publications. These include Marilyn J. Baleshiski, 
for turning our many rough drafts into a polished manuscript, to Kathleen 
H. Borkowski, for her graphic arts work on the text figures and cover, 
and to Richard L. (Dick) London, FSA, for his work as mathematics 
editor. 

Thomas N. Herzog, Ph.D., A.S.A    Graham Lord, Ph.D., A.S.A. 
Reston, Virginia    Princeton, New Jersey 

September, 2002 
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Chapter 1 
Introduction

1.1  Overview 

Monte Carlo methods are useful in solving a wide range of financial and 
insurance problems, both stochastic and deterministic, which cannot eas-
ily be solved using analytic methods. Monte Carlo methods are often re-
ferred to as stochastic simulation methods. The term “stochastic” is used 
to modify simulation in order to emphasize that we are confining our at-
tention to simulation in which numbers are randomly selected from one 
or more probability distributions. The term “Monte Carlo” was coined 
during U.S. research work on the development of the hydrogen bomb in 
the years immediately following World War II. Monte Carlo methods 
were rarely performed prior to the advent of electronic computers. Be-
cause tremendous financial resources were expended on the Manhattan 
Project to develop the atom bomb and the ensuing work on the develop-
ment of the hydrogen bomb, these projects were some of the first to have 
such computers. In fact, this explains why much of the early work on 
random number generators was performed by the scientists working on 
these two projects. Today the nearly universal availability of high-speed 
electronic computers makes Monte Carlo methods a cheap and effective 
method for solving a wide variety of complex, practical problems. 

The actuarial applications of this technique include (1) model of-
fices of life insurance and annuities, (2) analysis of investment and asset 
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allocation strategies (e.g., bond call properties), (3) asset/liability man-
agement, (4) product design and pricing studies, (5) dynamic solvency 
testing of insurance company (or pension fund) solidity and resilience, 
(6) collective risk models in general, and (7) aggregate loss distributions 
in particular. 

1.2  The Simulation Procedure 

The crucial steps of a simulation are the following: 

(1) The construction of an appropriate model 
(2) The design of the experiment 
(3) The repeated generation of random numbers from one (or 

more) probability distributions 
(4) The analysis of the results 

The focus of the first nine chapters of this work will be on the efficient 
generation of random numbers, also referred to as output values. The 
other steps, which are heavily dependent on the specific nature of the 
problem at hand, are illustrated in the detailed examples, which comprise 
Chapters 10-13 of this work. Since the generation of random numbers is 
crucial to any simulation, Chapters 2-6 contain a discussion of schemes 
(or algorithms) for the computer generation of random numbers from a 
number of frequently-used probability distributions. Such generation 
procedures were used in the past because they produce a large number of 
random numbers in a short period of time and do not require much com-
puter storage space, as would a large table of random numbers perma-
nently stored in the computer’s memory.  

In the remainder of this chapter, we discuss the historical devel-
opment of the subject and then briefly describe some applications of the 
Monte Carlo method to finance and insurance. 

1.3  Historical Development 

The Monte Carlo method goes back at least as far as 1733 when Buffon 
[10] considered the following experiment that became known as “Buf-
fon’s needle problem.” If a thin, straight needle of length b is tossed onto 
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a two-dimensional surface (e.g., a table) having equally-spaced parallel 
lines a distance d ≥ b apart, and the needle lands entirely on the table, 
Buffon sought the probability (which is 2 )b

dπ  that the needle would not 
intersect any of the lines on the table. 
 In 1820, Laplace revived interest in Buffon’s problem by 
suggesting that one could estimate the value of π by using the experi-
mental results of a large number of such tosses in conjunction with re-
sults from probability theory.  

According to Bennett [6], “The best-known early demonstration 
of a random sampling experiment was performed by William Sealy 
Gossett, a research chemist working for the Arthur Guinness Son & 
Company, Ltd. in Dublin, who was studying the relationship between the 
quality of Guinness beer and various factors in the beer’s production.” 
 Gossett, writing under the name of Student [68], described the 
Student’s t-distribution that he used to study the distribution of means in 
small samples. Because his work at Guinness was highly confidential, he 
chose a totally unrelated experiment to illustrate his results. His experi-
ment involved the height and left middle finger length for each of 3,000 
criminals. This experiment was carried out by transcribing the data on 
each of these 3,000 individuals on a separate piece of cardboard, thor-
oughly shuffling the pieces of cardboard, and then drawing 750 samples 
of four observations each – a reasonably laborious process. 
 The first reported use of modern computing equipment to per-
form stochastic simulation was carried out by the scientists in the United 
States working on the development of the hydrogen bomb. According to 
Rhodes [60], “At the end of World War II, many of the scientists who 
had worked on the Manhattan Project left Los Alamos and took jobs at 
universities or research institutes. In particular, Stanislaw Ulam took an 
Associate Professorship at the University of Southern California. Shortly 
after his arrival there, he became seriously ill and spent some time on 
medical leave from the University. Resting at home during his extended 
recovery, Ulam amused himself playing solitaire. Sensitivity to patterns 
was part of his gift. He realized that he could estimate how a game would 
turn out if he laid down a few trial cards and then noted what proportion 
of his tries were successful, rather than attempting to work out all the 
possible combinations in his head. (Here Ulam was thinking about Can-
field, or other versions of solitaire where the skill of the player is not 
important.) ‘It occurred to me then,’ he remembers, ‘that this could be 
equally true of all processes involving branching of events.’ Fission with 
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its exponential spread of reactions was a branching process; so would the 
propagation of thermonuclear burning be. ‘At each stage of the [fission] 
process, there are many possibilities determining the fate of the neutron. 
It can scatter at one angle, change its velocity, be absorbed, or produce 
more neutrons by a fission of the target nucleus, and so on.’ Instead of 
trying to derive the expected outcomes of these processes with complex 
mathematics, Ulam saw that it should be possible to follow a few thou-
sand individual sample particles, selecting a range for each particle’s fate 
at each step of the way by throwing in a random number, and take the 
outcomes as an approximate answer – a useful result. This iterative proc-
ess was something a computer could do.” 

In April of 1946, Ulam was invited to return to work at Los Ala-
mos and subsequently told the eminent mathematician John von Neu-
mann about his solitaire discovery. Ulam and von Neumann then “devel-
oped the mathematics together and named the procedure the Monte Carlo 
method ” According to Ulam [70], “[I]t was named for Monte Carlo 
because of the element of chance, the production of random numbers 
with which to play the suitable games.” Ulam stated that “the name 
Monte Carlo contributed very much to the popularization of this proce-
dure.” Von Neumann had access to the University of Pennsylvania’s 
Electronic Numerical Integrator and Computer (ENIAC), a multipurpose 
electronic computer completed in 1945. According to Eves [19], “This 
was the first digital computer controlled by vacuum tubes. The machine 
required a 30 × 50 foot room, contained 19,000 vacuum tubes, and 
weighed 30 tons.” Von Neumann used the ENIAC to generate random 
numbers, thereby successfully achieving the first computer application of 
the Monte Carlo method.  

1.4  Examples of the Use of the Monte Carlo Method 

There are at least two general types of problems amenable to solution by 
stochastic simulation. The first are deterministic problems that are diffi-
cult to solve directly. According to Hammersley and Handscomb [26], 
“The possibility of applying Monte Carlo methods to deterministic 
problems was noticed by Fermi, von Neumann, and Ulam, and popular-
ized by them in the immediate post-war years. About 1948, Fermi, 
Metropolis, and Ulam obtained Monte Carlo estimates for the eigenval-
ues of the Schrodinger equation.”  
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 Another application of the Monte Carlo method to a determinis-
tic problem involves the evaluation of complicated integrals. The method 
of solution is illustrated in Figure 1.1 below. To find the area under an 
irregular curve, )(xf , we surround the area with a rectangle and instruct 
the computer to generate a large number of points within the rectangle. 
We then count the number of points lying under the curve and divide it 
by the total number of random points generated. This gives us the pro-
portion of points lying in the region of interest. We obtain our desired 
result by multiplying this proportion by the area of the rectangle. To 
increase the reliability of our results, we generate a larger number of ran-
dom points. 
 The second type of problem is statistical in nature and involves a 
number of random variables that are correlated with one another.  These 
are illustrated in the problems described in the remainder of this section. 
 

 
FIGURE 1.1 

 
  
1.4.1  Estimating Mortgage Prepayment Rates 
 
In the United States, the outstanding balance on single-family mortgages 
is several trillion dollars. The mortgage companies originating such 
mortgages frequently sell the loans to one of three large entities: the 
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Government National Mortgage Association (Ginnie Mae), the Federal 
National Mortgage Association (Fannie Mae), or the Federal Home Loan 
Mortgage Corporation (Freddie Mac). Ginnie Mae, Fannie Mae, and 
Freddie Mac then group similar loans together and sell them to investors 
in the form of so-called mortgage-backed securities. In order for inves-
tors to price these mortgage-backed securities accurately, investors need 
to know when the loans constituting the mortgage-backed securities will 
terminate – either by prepayment or by attainment of the maturity date of 
the mortgage. This is highly dependent on the course of future interest 
rates – which is most difficult to predict. One naïve approach to predict-
ing future interest rates is to just assume they will be constant from the 
date of origination until the date the loan is scheduled to mature. This is 
an unsatisfactory approach because if mortgage interest rates were to be 
constant for the entire term of the loan, prepayment rates would be low – 
well below historical averages. In Chapter 10 we describe a simple, yet 
effective, procedure for generating a large number of interest rate sce-
narios. 
 One way around this is to use stochastic simulation or other tech-
niques to generate a large number of interest rate scenarios over the fu-
ture lives of such mortgages. This usually results in a more realistic 
approach – one that produces an entire probability distribution of pre-
payment rates. 
 In the mortgage prepayment example just presented, we implic-
itly assumed a single-decrement situation – i.e., we assumed that all of 
the mortgage terminations were prepayments. However, if we look at the 
situation from the perspective of a mortgage guarantee insurance com-
pany (which is insuring the mortgages against the risk that the mortgage 
may be foreclosed on), then we have a double-decrement problem in 
which the type of termination – foreclosure or prepayment – is usually 
important. The mortgage guarantee insurance company needs to (1) de-
termine a premium to charge for mortgage guarantee insurance on mort-
gages insured in the future and (2) estimate the future liabilities of books 
of business currently in force. As above, one approach to these problems 
is to use stochastic simulation or other techniques to generate a large 
number of interest rate scenarios over the future lives of such mortgages. 
This would, for instance, produce an entire probability distribution for 
the estimated future liabilities of the mortgage guarantee insurance com-
pany. 
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1.4.2  Reverse Mortgages – A Model Office Approach 

A number of years ago, the Chief Actuary of a mortgage insurance com-
pany was faced with the problem of predicting the future experience of 
reverse mortgages, a new product which the company had decided to 
insure. Reverse mortgages allow the elderly homeowner who is house 
rich but cash poor to borrow money against the equity in her house while 
continuing to reside in the house until she either decides to sell the house 
or dies.  To better understand the issues, the actuary constructed two two-
stage simulation models, one of the appreciation of the price of the house 
and the other of the continued occupancy of the house. The first stage of 
the house price appreciation model was a multivariate normal distribu-
tion of national house price appreciation rates. The second stage was a 
model of the annual appreciation rates of 1,000 individual houses given 
the rate of national appreciation for that year (i.e., the result of the first 
stage of the model). In the occupancy (or mortality) model, the actuary 
first simulated the annual mortality rates of female lives beginning with 

65q  in 1990. More generally, estimated values were produced for xq +65

In year ,1990 x+  for .44,,2,1 =x  Finally, given the simulated xq  val-
ues, the experience of the 1,000 insureds was then simulated. Thus, four 
separate models (two for house price appreciation rates and two for 
mortality rates) were effectively simulated in order to improve the under-
standing of the issues involved with reverse mortgages. 

This application of the Monte Carlo method is described in more 
detail in Chapter 11. 

1.4.3  Imputation of Missing Data Elements 

A life insurance company has a cohort of insured lives consisting of 900 
policyholders. The medical records of 840 of these insureds are com-
plete, but the other 60 are, for whatever reason, missing information on 
the most recent cholesterol test. The results of the cholesterol tests are 
partitioned into three classes: low, medium, or high. The probability of 
death during the ensuing 12 months for each policyholder is a function of 
his or her cholesterol test result, as follows: 

Low:   1% 
Medium:  2% 
High:   5% 



8 Examples of the Use of the Monte Carlo Method 

Prior to seeing any test results, the chief medical officer of the insurance 
company feels that one-third of the insureds will fall into each of the 
three classes. How might we estimate the probability distribution of the 
frequency of insurance claims from these 900 policies over the next 12 
months? 

Perhaps the simplest approach is to assign all 60 insureds a score 
of “medium.” Unfortunately, this is unsatisfactory because it does not 
even correctly estimate the mean result. 

A better approach, perhaps, is to assign 20 insureds to each of 
the three classes. Although this produces a correct estimate of the (prior) 
mean of the 60 insureds lacking test results, it leads to an underestimate 
of the variance of the test results of all 900 policyholders. Essentially this 
approach assumes that we have valid cholesterol test scores on 900 poli-
cyholders when, in fact, we only have 840. 

A preferred approach is to use stochastic simulation to impute at 
least two values for each missing score. This is the methodology first 
suggested by Rubin [64]. This approach allows the actuary to get reason-
able estimates of both the mean and the variance of the distribution with-
out extensive effort. 

1.4.4  Other Insurance Products 

Stochastic simulation is also highly useful for modeling natural catastro-
phes such as severe earthquakes or hurricanes, both of which have low 
frequency of occurrence but high severity of loss. These are of particular 
interest to reinsurance companies. 
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Chapter 2 
 

Generating Random Digits and 
Uniform Random Numbers over [0,1) 

 
 
 
This chapter is intended to introduce the reader to various techniques 
related to the generation of random numbers. It is not meant to be a com-
prehensive treatment of the subject, nor is it our aim to compete with 
Knuth [38] who devotes almost 200 pages to the topic of randomness. 
(Note, however, that an alternative perspective is provided in Chapter 6 
of this text.) A highly readable, non-mathematical introduction to the 
topic is found in Chapter 8 of Bennett [6]. As research continues on this 
fascinating topic, there is not yet a definitive body of work on this sub-
ject. Thus, our aim is simply to make our readers aware of some of the 
basic issues and to point them in the right direction to the maximum 
extent possible. In particular, we have almost no discussion of statistical 
tests of randomness in this book. Again, we refer the interested reader to 
Chapter 3 of Knuth. For our purposes, random sequences are those with-
out any discernible pattern, or, more precisely, those whose discernible 
patterns arise and then disappear without any discernible pattern. 

In this chapter, we discuss a number of algorithms used to gener-
ate sequences of random numbers on a computer. Once such an algo-
rithm has been completely specified, the exact sequence of numbers to be 
produced is determined. Because such sequences of numbers are pro-
duced in a deterministic fashion, they are usually called pseudo-random 
or quasi-random sequences in the technical literature. Here, however, we 
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plan to call them simply random sequences and to avoid a philosophical 
discussion of the concept of randomness. 

One of the advantages of such an algorithm is that it facilitates 
the reproduction of results among researchers, regulators, legal advo-
cates, and/or other interested parties. Some of the desirable properties of 
such a random generator are the following: 

(1) It should be easy to program on a computer.  
(2) It should produce a long sequence of numbers before it 

begins to repeat or recycle the numbers. 
(3) It should have acceptable statistical properties for a 

wide-range of possible uses. 

Unfortunately, it is not easy to construct such an ideal random number 
generator. We omit from this list the goal that the random number gen-
erator consume only a small amount of the computer’s memory. With 
recent technological advances this should not be the problem it was in 
the past.  

When sequences of random numbers are used in conjunction 
with a stochastic model, the sequences may interact with the model in a 
way that distorts the results − whether means, variances, or correlations. 
Moreover, such distortions may only become apparent after a careful in-
depth analysis of the results of the simulation.  

We begin this section with a discussion of the generation of a se-
quence of random numbers, nU , from a uniform distribution over the unit 
interval from 0 to 1. We study the generation of uniform random num-
bers first because, as described later in this work, we can use such ran-
dom numbers together with mathematical transformations to generate 
random numbers from other probability distributions. Since a computer 
can represent a real number with only finite accuracy, we actually gener-
ate integers, nX , between zero and a positive integer m.  

Let U be a random variable with 

.1]10[ =<≤UrP  

Let U(k) denote the thk term in the decimal representation of U. That is, 

( ) 10 mod 10 ,kU k U = ⋅ 
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where x    denotes the largest integer less than or equal to x. Then U is 
uniformly distributed over [0,1) if and only if 
 

1[ ( ) ] ,
10

Pr U k j= =  

 
for j = 0,1,2,…,9, and k = 0,1,2,…. This result is established on pages 29-
31 of Yakowitz [74]. 

Thus we have established that random variables which are uni-
formly distributed over )1,0[  can be easily transformed into discrete ran-
dom variables over the digits 0 through 9, and we can transform random 
digits into uniform random numbers having as many decimal places as 
we desire. 
 
 
2.1  Random Numbers Before Modern Computers 
 
Before the advent of modern electronic computers, researchers employed 
various creative schemes to obtain random numbers for their research 
studies and experiments. A table of 41,600 random digits, “taken at ran-
dom from census reports,” was published in 1927 by L.H.C. Tippett. A 
mere ten years after its publication, Tipett’s table was deemed inadequate 
for very large sampling experiments. In 1938, R.A. Fisher and F. Yates 
published 15,000 additional random digits, selected from the 15th through 
19th decimal places of logarithmic expansions. The digits were obtained 
through a procedure involving two decks of playing cards. 

Since then, a number of devices have been built to generate ran-
dom numbers mechanically. The first such machine was used in 1939 by 
M.G. Kendall and B. Babington-Smith to produce a table of 100,000 
random digits. Here, the digits were generated randomly by a machine 
constructed from a rotating disk. The disk was partitioned into ten sec-
tors. As the disk rotated, one of the ten sectors was momentarily illumi-
nated by a flashing neon light. 

 The Ferranti Mark I computer, first installed in 1951, had a 
built-in instruction that put 20 random bits into the accumulator using a 
resistance noise generator; this feature had been suggested by Alan 
Turing. 
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In 1955, the Rand Corporation published a widely-used book 
entitled A Million Random Numbers and 100,000 Normal Deviates. The 
random digits were obtained by re-randomizing a table of digits gener-
ated by the random frequency pulses of an electronic roulette wheel. 
 As larger and larger tables of random numbers were needed to 
solve both deterministic and probabilistic problems, the storage of ran-
dom numbers within the early computers began to consume far too much 
precious memory. Many deemed the solution to be a formula that al-
lowed the computer to generate a random number using the computer’s 
ordinary arithmetical operations at the instant such a number was needed 
in the computation process. 
 Amazingly, things came full circle for tables of random numbers 
40 years after the Rand Corporation’s publication date. As reported in 
Knuth [38], “Advances in technology made tables [of random numbers] 
useful again during the 1990s, because a billion well-tested random bytes 
could be distributed on CDROM. George Marsaglia helped resuscitate 
tables in 1995 by preparing a demonstration disk that contained 650 ran-
dom megabytes, generated by combining the output of a noise-diode cir-
cuit with deterministically scrambled rock music. (He called it ‘white 
and black noise.’)” 
 
 
2.2 von Neumann’s Middle Square Method 
 
In 1951, von Neumann proposed one of the first schemes for generating 
random numbers on an electronic computer. This arithmetical procedure, 
called the middle-square method, generated random numbers 0x , 1x , …, 
each composed of n or 1+n  digits. This algorithm starts with a number, 

0x , n-digits long, squares it, and then sets 1x  to be the middle n or 1+n  
digits of 2

0x . The algorithm continues on with 2x  being the middle n or 
1+n  digits of 2

1x , and so on. For example, if we choose 0x  = 157, a 
number having three digits, then 1x  = 464 because the middle three dig-
its of (157)2 = 24,649 are 464. Similarly, because (464)2 = 215,296, we 
obtain 2x  = 1,529. 
 Unfortunately, this method has been found to be a poor source of 
random numbers, flawed by imprudent choices of the starting value 0x . 
For example, starting with the 4-digit number 3,792 and squaring it, we 
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obtain the number 14,379,264 with the middle four digits being 3,792, 
the same 4-digit number with which we started. 
 
 
2.3 Multiplicative Congruential Random  

Number Generators 
 

Today a frequently-used type of random number generator is known as a 
linear congruential generator, which was introduced by Lehmer [43]. In 
order to fully specify an individual linear congruential generator we must 
select the following four integer-valued parameters: 
 

Parameter Name Symbol Restrictions 
The modulus m 0>m  

The multiplier a ma <<0  
The increment c mc <≤0  

The starting value 0X  mX << 00  
 
The (n+1)st term of the random sequence specified is 

 
cXaX nn +⋅≡+1     mod  m. 

 
In other words, 1+nX  is the remainder when )( cXa n +⋅  is divided by m, 
so the possible values of nX are 0,1, …, 1−m . 
 
2.3.1  Linear Congruential Random Number Generators 
  
To illustrate the use of a linear congruential generator, we set m = 8 (so 
there are eight distinct possible values), a = 5, c = 1, and 0X = 3. The 
resulting sequence of numbers is given in the following table. 
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TABLE 2.1 
Values of the Linear Congruential 

Random Number Generator 
151 +⋅≡+ nn XX   mod 8 

n  nX 15 +⋅ nX
8

15 +⋅ nX
1+nX

0 3 16 2 + (0/8) 0 
1 0 1 (1/8) 1 
2 1 6 (6/8) 6 
3 6 31 3 + (7/8) 7 
4 7 36 4 + (4/8) 4 
5 4 21 2 + ( 5/8) 5 
6 5 26 3 + (2/8) 2 
7 2 11 1 + (3/8) 3 

There is no point in displaying any additional terms of the sequence be-
cause at n = 8, the sequence begins repeating the numbers in the same 
order. Algebraically, this means that 8+nX = nX for all non-negative inte-
gers n. The portion of the sequence displayed above includes each of the 
eight possible values exactly once. 

The sequence obtained when m = 10 and 0X = a = c = 7 is 

7,6,9,0,7,6,9,0,… . 

This sequence only makes use of four of the ten possible values before it 
gets into a loop, or, more formally, begins to cycle. These two sequences 
illustrate the following common property of linear congruential se-
quences: there is ultimately a cycle of numbers that is endlessly repeated. 
The appendix to this chapter describes methods for choosing a, m, c, and 
X0 so that the maximum cycle length, m, is obtained. For more details, 
see Knuth [38]. 

2.3.2  Multiplicative Congruential Random Number Generators 

A multiplicative congruential generator is the special case of a linear 
congruential generator which is obtained when c = 0. Because the 
generation process is a little faster when c = 0, and most other desirable 
features are preserved, many practitioners prefer to use multiplicative 
congruential generators.  
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2.3.2.1  RANDU 
 
The linear congruential random number generator given by 
 

nn XX ⋅≡+ 539,651   mod 312 , 
 
where 0X  is odd, is known as RANDU. It was developed by IBM and 
was commonly used on most of the world’s computers during the late 
1960s. Because RANDU can be rewritten as 
 

nnn XXX ⋅−⋅≡ ++ 96 12   mod 312 , 
 
it fails most three-dimensional criteria for randomness as discussed in 
Section 2.3.2.3 below. In our opinion, it should never have been used. 
 
2.3.2.2  GGL 
 
IBM eventually replaced RANDU by a random number generator known 
as GGL, developed by Lewis, Goodman, and Miller [44]. It is a multi-
plicative congruential generator with values 5

0 716807 === Xa and 
1231 −=m . GGL has a cycle length of 22231 ≈− billion; this is the max-

imum possible length because, if nX is ever zero, then all subsequent 
terms must be zero. Prior to its implementation, this generator success-
fully passed a wide range of statistical tests as described in Lewis, 
Goodman, and Miller. GGL is still the random number generator em-
ployed as the “?” operator in IBM’s version of the APL computer pro-
gramming language. This generator still works well for many problems 
as noted on page 189 of Knuth [38]. 

 
2.3.2.3  Comparing RANDU and GGL 
 
To test the relative effectiveness of RANDU and GGL, we generate 
100,000 random numbers for each generator over the range of 0 to        
m−1. In both cases, we choose 1 as our seed (i.e., 10 =X ). Then for 

,999,99,,0 =j  we define  
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







⋅=

m
X

Y j
j 10 , 

 
where  x  denotes the largest integer less than or equal to x, and tabulate 
the frequency of each possible value of jY  as well as of the triples 

),,( 21 ++ jjj YYY . We summarize the results in Tables 2.2 and 2.3 below. 
For the single digits, jY , both generators perform well based on 

the value of their chi-square goodness-of-fit test statistic. However, for 
the triples generated by RANDU, the value of the chi-square goodness-
of-fit test statistic is 1638.3, more than 12 standard deviations above its 
mean. By contrast, that of GGL is 1021.7, only about half a standard 
deviation above its mean. As mentioned above, this is an example of a 
discernible pattern persisting in a discernible way, a fatal weakness of 
RANDU. 

 
TABLE 2.2 

Frequency Count of Selected Digits for 
 Each Random Number Generator 

Digit 
Random Number Generator 

RANDU GGL 
0 9,862 10,047 
1 10,097 10,016 
2 9,790 9,863 
3 9,900 9,878 
4 10,025 10,012 
5 10,053 10,285 
6 10,094 9,931 
7 10,051 9,955 
8 9,992 10,118 
9 10,136 9,895 

Value of Test 
Statistic              11.6         14.9 
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TABLE 2.3 
Frequency Count of Selected Triples 

Observation 

Frequency 
Count under 

RANDU Observation 

Frequency 
Count under 

GGL 
(1,5,4) 143 (3,7,8) 128 
(6,0,9) 141 (4,5,0) 128 
(5,5,7) 140 (5,6,5) 128 
(3,6,9) 139 (1,4,4) 127 
(9,9,8) 136 (0,1,8) 126 
(2,4,5) 63 (2,9,9) 63 
(3,6,3) 71 (0,3,9) 71 
(8,9,2) 72 (6,4,9) 72 
(0,2,7) 75 (0,4,3) 75 
(9,0,4) 76 (3,0,3) 76 

Value of Test 
Statistic 1638.3 Value of Test 

Statistic 1021.7 

 
 
2.3.2.4  A Deficiency of Multiplicative Congruential Generators  
 
Marsaglia [46] has identified a serious defect in multiplicative congruen-
tial random number generators. This is perhaps best understood by con-
sidering the following example constructed by Hoaglin [31]. 

We consider the generator 
 

nn XX ⋅≡+ 61    mod 17, 
 

which, if 10 =X , produces the sequence 
 

1,6,2,12,4,7,8,14,16,11,15,5,13,10,9,3,… . 
 
If we now plot the overlapping ordered pairs produced by this generator, 
namely, (1,6), (6,2), (2,12), …, in two-space, we obtain the graph shown 
in Figure 2.1. 


